3.3 VOLT HIGH-DENSITY SUPERSYNC IITM NARROW BUS FIFO
$512 \times 18 / 1,024 \times 9,1,024 \times 18 / 2,048 \times 9$
IDT72V223, IDT72V233
$2,048 \times 18 / 4,096 \times 9,4,096 \times 18 / 8,192 \times 9$
$8,192 \times 18 / 16,384 \times 9,16,384 \times 18 / 32,768 \times 9$
IDT72V243, IDT72V253
IDT72V263, IDT72V273
$32,768 \times 18 / 65,536 \times 9,65,536 \times 18 / 131,072 \times 9$

FEATURES:

- Choose among the following memory organizations:

IDT72V223		$512 \times 18 / 1,024 \times 9$
IDT72V233		1,024 x 18/2,048 $\times 9$
IDT72V243		2,048 x 18/4,096 x 9
IDT72V253		4,096 x 18/8,192 x 9
IDT72V263		8,192 x 18/16,384 x 9
IDT72V273		$16,384 \times 18 / 32,768 \times 9$
IDT72V283		$32,768 \times 18 / 65,536 \times 9$
IDT72V293		65,536 x 18/131,072 x

- Functionally compatible with the IDT72V255LA/72V265LA and IDT72V275/72V285 SuperSync FIFOs
- Up to 166 MHz Operation of the Clocks
- User selectable Asynchronous read and/or write ports (BGA Only)
- User selectable input and output port bus-sizing
- x9 in to x9 out
- x9 in to x18 out
- x18 in to x9 out
- x18 in to x18 out
- Pin to Pin compatible to the higher density of IDT72V2103/72V2113
- Big-Endian/Little-Endian user selectable byte representation
- 5V tolerant inputs
- Fixed, low first word latency
- Zero latency retransmit
- Auto power down minimizes standby power consumption
- Master Reset clears entire FIFO
- Partial Reset clears data, but retains programmable settings
- Empty, Full and Half-Full flags signal FIFO status
- Programmable Almost-Empty and Almost-Full flags, each flag can default to one of eight preselected offsets
- Selectable synchronous/asynchronous timing modes for AlmostEmpty and Almost-Full flags
- Program programmable flags by either serial or parallel means
- Select IDT Standard timing (using $\overline{\mathrm{EF}}$ and $\overline{\mathrm{FF}}$ flags) or First Word Fall Through timing (using $\overline{O R}$ and $\overline{\mathrm{R}}$ flags)
- Output enable puts data outputs into high impedance state
- Easily expandable in depth and width
- JTAG port, provided for Boundary Scan function (BGA Only)
- Independent Read and Write Clocks (permit reading and writing simultaneously)
- Available in a 80 -pin Thin Quad Flat Pack (TQFP) or a 100-pin Ball Grid Array (BGA) (with additional features)
- High-performance submicron CMOS technology
- Industrial temperature range $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$ is available

FUNCTIONAL BLOCK DIAGRAM

*Available on the

DESCRIPTION:

The IDT72V223/72V233/72V243/72V253/72V263/72V273/72V283/ 72V293 are exceptionally deep, high speed, CMOS First-In-First-Out (FIFO) memories with clocked read and write controls and aflexible Bus-Matchingx9/ x18 data flow. These FIFOs offer numerous improvements over previous SuperSync FIFOs, including the following:

- Flexible x9/x18 Bus-Matching on both read and write ports
- The limitation of the frequency of one clock input with respect to the other has been removed. The Frequency Select pin (FS) has been removed, thus it is no longer necessary to select which of the two clock inputs, RCLK or WCLK, is running at the higher frequency.
- The period required by the retransmit operation is now fixed and short.
- Thefirstword datalatency period, from the time the firstword is writtento an empty FIFO to the time it can be read, is now fixed and short. (The variable clock cycle counting delay associated with the latency period found on previousSuperSync deviceshas been eliminated onthis SuperSyncfamily.)
- Asynchronous/Synchronous translation on the read or write ports
- High density offerings up to 1 Mbit

Bus-Matching SuperSync FIFOs are particularly appropriate for network, video, telecommunications, data communications and other applications that need to buffer large amounts of data and match busses of unequal sizes.

PIN CONFIGURATIONS

NOTE:

DESCRIPTION (CONTINUED)

Each FIFO has a data input port (Dn_{n}) and a data output port (Qn), both of which can assume either an 18-bit or a 9-bit width as determined by the state of external control pins InputWidth(IW) and OutputWidth (OW) duringtheMaster Resetcycle.

The input port can be selected as eithera Synchronous (clocked) interface, or Asynchronous interface. During Synchronous operation the input port is controlled by a WriteClock(WCLK) inputandaWrite Enable ($\overline{\mathrm{WEN}}$) input. Data present on the Dn data inputs is written into the FIFO on every rising edge of WCLK when $\overline{W E N}$ is asserted. During Asynchronous operation only the WR input is used to write data into the FIFO. Data is written on a rising edge ofWR, the $\overline{W E N}$ input should be tied to its active state, (LOW).

Theoutputportcanbe selected as eitheraSynchronous (clocked) interface, or Asynchronous interface. During Synchronous operation the output port is controlled by a ReadClock (RCLK) input and Read Enable ($\overline{\mathrm{REN}}$) input. Data is read from the FIFO on every rising edge of RCLK when $\overline{\operatorname{REN}}$ is asserted.

During Asynchronous operation only the RDinputisused to read datafrom the FIFO. Data is read on a rising edge of RD, the $\overline{\mathrm{REN}}$ input should be tied to its active state, LOW. When Asynchronous operation is selected onthe outputport the FIFO must be configured for Standard IDT mode, and the $\overline{\text { OE input used }}$ to provide three-state control of the outputs, Qn.

The frequencies of both the RCLK and the WCLK signals may vary from 0 tofmax with complete independence. There are no restrictions onthefrequency of the one clock input with respect to the other.

There are two possible timing modes of operation with these devices: IDT Standard mode and First Word Fall Through (FWFT) mode.

In IDTStandardmode, the firstword written to anempty FIFO will not appear on the data output lines unless a specific read operation is performed. A read operation, which consists of activating $\overline{R E N}$ and enabling a rising RCLKedge, will shift the word from internal memory to the data output lines.

In FWFT mode, the first word written to an empty FIFO is clocked directly to the data output lines after three transitions of the RCLK signal. A $\overline{R E N}$ does

PIN CONFIGURATIONS (CONTINUED)

$\checkmark{ }^{\text {A1 }}$										
A	$\underset{\text { wCLK }}{\bigcirc}$	$\frac{\bigcirc}{P R S}$	$\frac{\mathrm{O}}{\mathrm{LD}}$	$\frac{\bigcirc}{P A F}$	$\underset{\text { FSELO }}{\bigcirc}$	$\frac{\mathrm{O}}{\mathrm{BE}}$	$\frac{O}{\mathrm{ASYR}}$	$\underset{\text { PFM }}{\bigcirc}$	$\underset{\mathrm{RM}}{\mathrm{O}}$	$\underset{\text { REN }}{\bigcirc}$
B	$\frac{0}{\mathrm{WEN}}$	$\frac{O}{\text { MRS }}$	$\underset{\text { FWFT/SI }}{\bigcirc}$	O	$\frac{\mathrm{O}}{\mathrm{HF}}$	$\underset{\text { FSEL1 }}{\bigcirc}$	$\underset{\text { IP }}{\mathrm{O}}$	$\frac{\bigcirc}{\text { PAE }}$	$\frac{O}{\mathrm{EF} / O \mathrm{R}}$	$\underset{\text { RCLK }}{\mathrm{O}}$
c	$\frac{\bigcirc}{\text { ASYW }}$	$\frac{O}{\text { SEN }}$	$\underset{\mathrm{FF} \sqrt{\mathrm{I}}}{\bigcirc}$	$\underset{v c c}{O}$	$\underset{\mathrm{Vcc}}{\mathrm{O}}$	$\underset{\mathrm{Vcc}}{\mathrm{O}}$	$\underset{\mathrm{Vcc}}{\mathrm{O}}$	$\underset{v c c}{O}$	$\frac{\mathrm{O}}{\mathrm{RT}}$	$\frac{O}{O E}$
D	$\underset{\mathrm{D} 17}{\mathrm{O}}$	○	$\underset{\mathrm{Vcc}}{\mathrm{O}}$	$\underset{\mathrm{GND}}{\mathrm{O}}$	$\underset{\text { GND }}{\bigcirc}$	$\underset{\text { GND }}{\bigcirc}$	$\underset{\text { GND }}{\bigcirc}$	$\underset{\mathrm{Vcc}}{\mathrm{O}}$	$\underset{\mathrm{Q} 16}{\mathrm{O}}$	$\underset{\text { Q17 }}{\mathrm{O}}$
E	$\underset{\mathrm{D} 16}{\mathrm{O}}$	$\underset{\text { D15 }}{0}$	$\underset{\mathrm{vcc}}{\mathrm{O}}$	$\underset{\text { GND }}{\circ}$	$\underset{\text { GND }}{\bigcirc}$	$\underset{\text { GND }}{\circ}$	$\underset{\text { GND }}{\bigcirc}$	$\underset{\mathrm{vcc}}{\mathrm{O}}$	$\underset{\text { Q14 }}{\circ}$	$\underset{\text { Q15 }}{\circ}$
F	$\underset{\mathrm{D} 13}{\mathrm{O}}$	$\underset{\text { D14 }}{0}$	$\underset{\mathrm{Vcc}}{\mathrm{O}}$	$\underset{\text { GND }}{\bigcirc}$	$\underset{\mathrm{Vcc}}{\mathrm{O}}$	$\underset{\text { Q13 }}{\circ}$	Q12			
G	$\begin{gathered} \mathrm{O} \\ \mathrm{D} 11 \end{gathered}$	$\underset{\mathrm{D} 12}{\mathrm{O}}$	$\underset{\mathrm{vcc}}{\mathrm{O}}$	$\underset{\text { GND }}{\bigcirc}$	$\underset{\text { GND }}{\bigcirc}$	$\underset{\text { GND }}{\circ}$	$\underset{\text { GND }}{\bigcirc}$	$\underset{\mathrm{Vcc}}{\mathrm{O}}$	\bigcirc	\bigcirc
H	O	$\begin{gathered} \mathrm{O} \\ \mathrm{D} 9 \end{gathered}$	$\underset{\text { D10 }}{0}$	$\underset{\mathrm{Vcc}}{\mathrm{O}}$	$\underset{\mathrm{vcc}}{\mathrm{O}}$	$\underset{\mathrm{Vcc}}{\mathrm{O}}$	$\underset{\mathrm{Vcc}}{\mathrm{O}}$	O	O	\bigcirc
J	$\begin{gathered} \mathrm{O} \\ \mathrm{D} 6 \end{gathered}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{D7} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{D} 2 \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{DO} \end{aligned}$	$\underset{\text { TMS }}{\bigcirc}$	$\underset{\text { TCK }}{0}$	$\underset{\text { TDO }}{\bigcirc}$	O	O	$\begin{gathered} \mathrm{O} \\ \mathrm{Q} 7 \end{gathered}$
K	$\begin{aligned} & \mathrm{O} \\ & \mathrm{D} 5 \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{D} 4 \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{D} 3 \end{aligned}$	O	$\underset{\text { TRST }}{\bigcirc}$	$\underset{T}{\circ}$	O	O	O	O_{06}
	1	2	3	4	5	6	7	8	9	10

BGA: 1 mm pitch, $11 \mathrm{~mm} \times 11 \mathrm{~mm}$ (BC100-1, order code: BC) TOP VIEW

DESCRIPTION (CONTINUED)

not have to be asserted for accessing the first word. However, subsequent words written to the FIFO do require a LOW on $\overline{R E N}$ for access. The state of the FWFT/SI input during Master Reset determines the timing mode in use.

For applications requiring more data storage capacity than a single FIFO can provide, the FWFTtiming modepermits depthexpansionby chainingFIFOs in series (i.e. the data outputs of one FIFO are connected to the corresponding data inputs of the next). No external logic is required.

These FIFOs have five flag pins, $\overline{\mathrm{EF}} / \overline{\mathrm{OR}}$ (Empty Flag or Output Ready), $\overline{\mathrm{FF}} / \overline{\mathrm{R}}$ (Full Flag or Input Ready), $\overline{\mathrm{HF}}$ (Half-full Flag), $\overline{\mathrm{PAE}}$ (Programmable Almost-Empty flag) and $\overline{\text { PAF }}$ (Programmable Almost-Full flag). The $\overline{\mathrm{EF}}$ and $\overline{\mathrm{FF}}$ functions are selected in IDT Standardmode. The $\overline{\mathrm{R}}$ and $\overline{\mathrm{OR}}$ functions are selected in FWFT mode. $\overline{\mathrm{HF}}, \overline{\mathrm{PAE}}$ and $\overline{\mathrm{PAF}}$ are always available for use, irrespective oftiming mode.
$\overline{\mathrm{PAE}}$ and $\overline{\mathrm{PAF}}$ can be programmed independently to switch at any point in memory. Programmableoffsets determine theflagswitching thresholdand can beloaded by two methods: parallel or serial. Eightdefaultoffsetsettings arealso provided, so that $\overline{\mathrm{PAE}}$ can be setto switch at a predefined number of locations from the empty boundary and the $\overline{\mathrm{PAF}}$ threshold can also be set at similar predefined values from the full boundary. The defaultoffsetvalues are setduring Master Reset by the state of the FSEL0, FSEL1, and $\overline{\mathrm{LD}}$ pins.

Forserial programming, $\overline{\mathrm{SEN}}$ togetherwith $\overline{\mathrm{LD}}$ oneach risingedge ofWCLK, are used to load the offset registers via the Serial Input (SI). For parallel programming, $\overline{\mathrm{WEN}}$ together with $\overline{\mathrm{LD}}$ on each rising edge of WCLK, are used to load the offset registers via \bar{D}. $\overline{R E N}$ together with $\overline{L D}$ on each rising edge of RCLK canbe used to read the offsets in parallelfrom Qn regardless of whether serial or parallel offset loading has been selected.

During Master Reset ($\overline{\mathrm{MRS}})$ the following events occur: the read and write pointers are set to the first location of the FIFO. The FWFT pin selects IDT Standard mode or FWFT mode.

The Partial Reset $(\overline{\mathrm{PRS}})$ also sets the read and write pointers to the first location of the memory. However, the timing mode, programmable flag programming method, and default or programmed offset settings existing before Partial Resetremain unchanged. Theflags are updatedaccordingtothe timing mode and offsets in effect. $\overline{\text { PRS }}$ is useful for resetting a device in midoperation, when reprogramming programmable flags would be undesirable.

Itisalso possibletoselectthetimingmodeofthe $\overline{\mathrm{PAE}}$ (Programmable AlmostEmpty flag) and $\overline{\text { PAF }}$ (Programmable Almost-Full flag) outputs. The timing modes can be setto be either asynchronous or synchronous for the $\overline{\mathrm{PAE}}$ and $\overline{\text { PAF flags. }}$

If asynchronous $\overline{\mathrm{PAE}} / \overline{\mathrm{PAF}}$ configuration is selected, the $\overline{\mathrm{PAE}}$ is asserted LOW onthe LOW-to-HIGHtransition of RCLK. $\overline{\text { PAE is resetto HIGH ontheLOW- }}$

Figure 1. Single Device Configuration Signal Flow Diagram
to-HIGH transition ofWCLK. Similarly, the PAF is asserted LOW onthe LOW-to-HIGH transition of WCLK and PAF is reset to HIGH on the LOW-to-HIGH transition of RCLK.

If synchronous $\overline{\mathrm{PAE}} / \overline{\mathrm{PAF}}$ configuration is selected , the $\overline{\mathrm{PAE}}$ is asserted and updated on the rising edge of RCLK only and not WCLK. Similarly, $\overline{\text { PAF }}$ is asserted and updated on the rising edge of WCLK only and not RCLK. The modedesired is configured duringmasterresetby the state ofthe Programmable Flag Mode (PFM) pin.

The Retransmit function allows data to be reread from the FIFO more than once. A LOW on the $\overline{R T}$ input during a rising RCLK edge initiates a retransmitoperation bysettingthe read pointertothe firstlocation ofthe memory array. A zero-latency retransmit timing mode can be selected using the RetransmittimingModepin(RM). DuringMaster Reset, aLOW on RM will select zero-latency retransmit. A HIGH on RM during Master Resetwill selectnormal latency.

If zero-latency retransmit operation is selected the first data word to be retransmitted will be placed on the output register with respect to the same RCLK edge that initiated the retransmit based on RT being LOW.

Referto Figure 11 and 12 for Retransmit Timingwith normal latency. Refer to Figure 13 and 14 for Retransmit Timing with zero-latency.

ABig-Endian/Little-Endian data word format is provided. This function is useful when data is written into the FIFO in long word format ($\times 18$) and read out of the FIFO in small word (x9) format. IfBig-Endian mode is selected, then themostsignificantbyte (word) of the long word written intothe FIFO will be read
out of the FIFOfirst, followed by the leastsignificant byte. IfLittle-Endian format is selected, then the leastsignificantbyte ofthe long word written into the FIFO will be read outfirst, followed by the mostsignificant byte. The mode desired is configured during master reset by the state of the Big-Endian ($\overline{\mathrm{BE}})$ pin.

The Interspersed/Non-Interspersed Parity (IP) bitfunction allows the user to select the parity bit in the word loaded into the parallel port ($\mathrm{D} 0-\mathrm{Dn}$) when programmingthe flag offsets. If Interspersed Parity mode is selected, then the FIFO will assume thatthe paritybitis located inbitposition Ds during the parallel programmingoftheflagoffsets. IfNon-Interspersed Parity modeisselected, then D8isassumedtobeavalidbitand D16andD17areignored. IP mode isselected during Master Resetby the state of the IP inputpin. This mode is relevant only when the input width is setto x18 mode. Interspersed Parity control only has an effectduringparallel programming of the offsetregisters. Itdoes noteffect the data written to and read from the FIFO.

AJTAG test portis provided, here the FIFO has fully functional Boundary Scan feature, compliant with IEEE 1149.1 Standard Test Access Port and Boundary Scan Architecture.

If, atany time, the FIFO is notactively performing an operation, the chip will automatically power down. Once in the power down state, the standby supply current consumption is minimized. Initiatingany operation (by activating control inputs) will immediately take the device out of the power down state.

The IDT72V223/72V233/72V243/72V253/72V263/72V273/72V283/ 72V293 arefabricatedusing IDT's high speed submicron CMOS technology.

TABLE 1 - BUS-MATCHING CONFIGURATION MODES

IW	OW	Write Port Width	Read Port Width
L	L	x 18	x 18
L	H	x 18	x 9
H	L	x 9	x 18
H	H	x 9	x 9

PIN DESCRIPTION (TQFP \& BGA PACKAGES)

Symbol	Name	I/0	Description
$\overline{\mathrm{BE}}{ }^{(1)}$	*Big-Endian/ Little-Endian	1	During Master Reset, a LOW on $\overline{\mathrm{BE}}$ will select Big-Endian operation. A HIGH on $\overline{\mathrm{BE}}$ during Master Reset will selectLittle-Endianformat.
D0-D17	Data Inputs	1	Data inputs for a 18-or 9-bit bus. When in 18-bit mode, Do-D17 are used. When in 9-bit mode, Do-D8 are used and the unused inputs, D9-D17, should be tied LOW.
EF/ $\overline{O R}$	Empty Flag/ Output Ready	0	In the IDT Standard mode, the $\overline{E F}$ function is selected. $\overline{\text { EF }}$ indicates whether or not the FIFO memory is empty. In FWFT mode, the $\overline{\mathrm{OR}}$ function is selected. $\overline{\mathrm{OR}}$ indicates whether or not there is valid data available at the outputs.
$\overline{\mathrm{FF}} / \overline{\mathrm{R}}$	Full Flag/ Input Ready	0	In the IDT Standard mode, the $\overline{F F}$ function is selected. $\overline{\text { FF }}$ indicates whether or not the FIFO memory is full. In the FWFT mode, the $\overline{\mathrm{R}}$ function is selected. IR indicates whether or not there is space available for writing to the FIFO memory.
FSELO(1)	FlagSelect Bit0	1	During Master Reset, this input along with FSEL1 and the $\overline{L D}$ pin, will select the default offset values for the programmable flags $\overline{\text { PAE }}$ and $\overline{\text { PAF }}$. There are up to eight possible settings available.
FSEL ${ }^{(1)}$	FlagSelect Bit 1	I	During Master Reset, this inputalong with FSELO and the $\overline{\mathrm{LD}}$ pin will select the default offset values for the programmable flags $\overline{\text { PAE }}$ and $\overline{\mathrm{PAF}}$. There are up to eight possible settings available.
FWFT/SI	FirstWord Fall Through/Serial In	1	During Master Reset, selects FirstWord Fall Through or IDT Standard mode. Atter Master Reset, this pin functions as a serial input for loading offsetregisters.
$\overline{H F}$	Half-Full Flag	0	HF indicates whether the FIFO memory is more or less than hall-full.
$\mathrm{PP}^{(1)}$	Interspersed Parity	1	During Master Reset, a LOW on IP will select Non-Interspersed Parity mode. A HIGH will select Interspersed Parity mode. Interspersed Parity control only has an effect during parallel programming of the offset registers. It does not effect the data written to and read from the FIFO.
IW ${ }^{(1)}$	InputWidth	1	This pin selects the bus width of the write port. During Master Reset, when IW is LOW, the write port will be configured with a x 18 bus width. If IW is HIGH, the write port will be a 9 bus width.
$\overline{\text { LD }}$	Load	1	This is a dual purpose pin. During Master Reset, the state ofthe $\overline{\text { LD }}$ input, along with FSELO and FSEL1, determines one of eight default offsetvalues forthe $\overline{\text { PAE }}$ and $\overline{\text { PAF flags, along withthe method by whichthese offsetregisters can }}$ be programmed, parallel or serial (see Table 2). After Master Reset, this pin enables writing to and reading from the offsetregisters.
$\overline{\text { MRS }}$	Master Reset	1	$\overline{\text { MRS }}$ initializes the read and write pointers to zero and sets the output register to all zeroes. During Master Reset, the FIFO is configuredforeitherFWFT or IDTStandard mode, Bus-Matching configurations, one of eight programmable flagdefaultsettings, serial or paralle l programming ofthe offsetsettings, Big-Endian/Little-Endianformat, zerolatency timing mode, interspersed parity, and synchronous versus asynchronous programmable flagtiming modes.
$\overline{\mathrm{O}}$	OutputEnable	1	$\overline{\mathrm{OE}}$ controls the output impedance of $\mathrm{Q}_{\text {n }}$.
OW ${ }^{(1)}$	OutputWidth	1	This pin selects the bus width of the read port. During Master Reset, when OW is LOW, the read port will beconfigured with a $\times 18$ bus width. If OW is HIGH, the read port will be ax9 bus width.
$\overline{\text { PAE }}$	Programmable Almost-Empty Flag	0	$\overline{\text { PAE goees LOW if the number of words in the FIFO memory is less than offsetn, which is stored in the Empty Offset }}$ register. PAE goes HIGH if the number of words in the FIFO memory is greater than or equal to offsetn.
$\overline{\text { PAF }}$	Programmable Almost-Full Flag	0	$\overline{\text { PAF goes HIGH if the number of free locations in the FIFO memory is more than offset } m \text {, which is stored in the }}$ Full Offset register. PAF goes LOW if the number of free locations in the FIFO memory is less than or equal tom.
PFM ${ }^{(1)}$	Programmable Flag Mode	1	During Master Reset, a LOW on PFM will select Asynchronous Programmable flag timing mode. A HIGH on PFM will selectSynchronous Programmable flagtiming mode.
$\overline{\text { PRS }}$	Partial Reset	1	$\overline{\mathrm{PRS}}$ initializes the read and write pointers to zero and sets the output register to all zeroes. During Partial Reset, the existing mode (IDT or FWFT), programming method (serial or parallel), and programmable flag settings are all retained.
Q0-Q17	DataOutputs	0	Data outputs for a 18- or 9-bit bus. When in 18-bit mode, Q0-Q17 are used and when in 9-bit mode, Q0-Q8 are used, and the unused outputs, Q9-Q17 should not be connected. Outputs are not 5 V tolerant regardless of the state of $\overline{O E}$.
$\overline{\text { REN }}$	Read Enable	1	$\overline{\text { REN }}$ enables RCLK for reading data from the FIFO memory and offset registers.
$\begin{aligned} & \hline \begin{array}{l} \text { RCLK/ } \\ \text { RD } \end{array} \end{aligned}$	ReadClock/ Read Strobe	1	If Synchronous operation of the read port has been selected, when enabled by $\overline{\text { REN, }}$, the rising edge of RCLK reads data from the FIFO memory and offsets from the programmable registers. If $\overline{L D}$ is LOW, the values loaded into the offset registers is output on a rising edge of RCLK. If Asynchronous operation of the read port has been selected, a rising edge on RD reads data from the FIFO in an Asynchronous manner. REN should be tied LOW. Asynchronous operation of the RCLK/RD input is only available in the BGA package.

NOTE:

1. Inputs should not change state after Master Reset.

PIN DESCRIPTION-CONTINUED (TQFP \& BGA PACKAGES)

Symbol	Name	I/O	Description
RM ${ }^{(1)}$	Retransmit Timing Mode	I	During Master Reset, a LOW on RM will select zero latency Retransmit timing Mode. A HIGH on RM will select normal latency mode.
$\overline{\mathrm{R}} \overline{\mathrm{T}}$	Retransmit	I	$\overline{\mathrm{RT}}$ asserted on the rising edge of RCLK initializes the READ pointer to zero, sets the $\overline{\mathrm{EF}}$ flag to LOW ($\overline{\mathrm{OR}}$ to HIGH in FWFT mode) and does not disturb the write pointer, programming method, existing timing mode or programmable flag settings. RT is useful to reread data from the first physical location of the FIFO.
$\overline{\text { SEN }}$	Serial Enable	1	$\overline{\text { SEN }}$ enables serial loading of programmable flag offsets.
WCLK WR	WriteClock/ WriteStrobe	1	If Synchronous operation of the write port has been selected, when enabled by $\overline{W E N}$, the rising edge of WCLK writes data into the FIFO. If Asynchronous operation of the write port has been selected, WR writes data into the FIFO on a rising edge in an Asynchronous manner, (WEN should betied to its active state). Asynchronous operation of the WCLK/WR input is only available in the BGA package.
WEN	Write Enable	I	$\overline{\text { WEN }}$ enables WCLK for writing data into the FIFO memory and offset registers.
Vcc	+3.3V Supply	I	These are Vcc supply inputs and must be connected to the 3.3V supply rail.

NOTE:

1. Inputs should not change state after Master Reset.

PIN DESCRIPTION (BGA PACKAGE ONLY)

Symbol	Name	I/O	Description
$\overline{\text { ASYR }}^{(1)}$	Asynchronous Read Port	1	A HIGH on this input during Master Reset will select Synchronous read operation for the output port. A LOW will select Asynchronous operation. If Asynchronous is selected the FIFO must operate in IDT Standard mode.
$\overline{\text { ASYW }}^{(1)}$	Asynchronous Write Port	1	A HIGH on this input during Master Reset will select Synchronous write operation for the input port. A LOW will select Asynchronous operation.
TCK ${ }^{(2)}$	JTAGClock	1	Clockinputfor JTAG function. One offourterminals required by IEEE Standard 1149.1-1990. Testoperations of the device are synchronous to TCK. Data from TMS and TDI are sampled onthe rising edge of TCK and outputs change on the falling edge of TCK. If the JTAG function is not used this signal needs to be tied to GND.
TDI ${ }^{(2)}$	JTAG TestData Input	1	One of four terminals required by IEEE Standard 1149.1-1990. During the JTAG boundary scan operation, test data serially loaded viathe TDI onthe rising edge of TCK to eitherthe Instruction Register, ID Register and Bypass Register. An internal pull-up resistor forces TDIHIGH ifleft unconnected.
TDO ${ }^{(2)}$	JTAG TestData Output	0	One offourterminals required by IEEE Standard 1149.1-1990. During the JTAG boundary scan operation, test data serially loaded outputviatheTDO onthefalling edge ofTCK fromeitherthe Instruction Register, ID Register and Bypass Register. This output is high impedance except when shifting, while in SHIFT-DR and SHIFT-IR controller states.
TMS ${ }^{(2)}$	JTAGModeSelect	1	TMS is aserial inputpin. One offourterminals required by IEEE Standard 1149.1-1990. TMS directs the device through its TAP controller states. An internal pull-up resistorforces TMS HIGH ifleft unconnected.
$\overline{\text { TRST }}{ }^{(2)}$	JTAGReset	I	TRST is an asynchronous reset pin for the JTAG controller. The JTAG TAP controller does not automatically reset upon power-up, thus it must be reset by either this signal or by setting TMS= HIGH for five TCK cycles. If the TAP controller is not properly reset then the FIFO outputs will always be in high-impedance. If the JTAG function is used but the user does not want to use $\overline{\text { TRST }}$, then $\overline{\text { TRST }}$ can be tied with $\overline{\mathrm{MRS}}$ to ensure proper FIFO operation. If the JTAG function is not used then this signal needs to be tied to GND.

NOTES:

1. Inputs should not change state after Master Reset.
2. These pins are for the JTAG port. Please refer to pages 41-44 and Figures 31-33.

ABSOLUTE MAXIMUM RATINGS

Symbol	Rating	Com'I \& Ind'l	Unit
VTERM $^{2)}$	Terminal Voltage with respect to GND	-0.5 to +4.5	V
TSTG	Storage Temperature	-55 to +125	${ }^{\circ} \mathrm{C}$
IOUT	DC Output Current	-50 to +50	mA

NOTE:

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
2. Vcc terminal only.

RECOMMENDED DC OPERATING CONDITIONS

Symbol	Parameter	Min.	Typ.	Max.	Unit
VCc $^{(1)}$	Supply Voltage (Com'I \& Ind'I)	3.15	3.3	3.45	V
GND	Supply Voltage (Com'I \& Ind'I)	0	0	0	V
$\mathrm{VIH}^{(2)}$	Input High Voltage (Com'I \& Ind'I)	2.0	-	5.5	V
$\mathrm{VILL}^{(3)}$	Input Low Voltage (Com'I \& Ind'I)	-	-	0.8	V
TA	OperatingTemperatureCommercial	0	-	+70	${ }^{\circ} \mathrm{C}$
TA	OperatingTemperature Industrial	-40	-	+85	${ }^{\circ} \mathrm{C}$

NOTES:

1. $\mathrm{Vcc}=3.3 \mathrm{~V} \pm 0.15 \mathrm{~V}$, JEDEC JESD8-A compliant.
2. Outputs are not 5 V tolerant.
3. 1.5 V undershoots are allowed for 10 ns once per cycle.

DC ELECTRICAL CHARACTERISTICS

(Commercial: $\mathrm{VCC}=3.3 \mathrm{~V} \pm 0.15 \mathrm{~V}, \mathrm{TA}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$; Industrial: $\mathrm{VCC}=3.3 \mathrm{~V} \pm 0.15 \mathrm{~V}, \mathrm{TA}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$; JEDEC JESD8-A compliant)

Symbol	Parameter	IDT72V223LIDT72V233LIDT72V243LIDT72V253LIDT72V263LIDT72V273LIDT72V283LIDT72V293LCommercial and Industrial ${ }^{(1)}$tcLK $=6,7.5,10,15 \mathrm{~ns}$		Unit
		Min.	Max.	
$1 \mathrm{LL}{ }^{(2)}$	InputLeakageCurrent	-1	1	$\mu \mathrm{A}$
ILO ${ }^{(3)}$	OutputLeakageCurrent	-10	10	$\mu \mathrm{A}$
VOH	Output Logic "1" Voltage, IOH = -2 mA	2.4	-	V
VoL	Output Logic "0" Voltage, IOL = 8 mA	-	0.4	V
ICC1 ${ }^{(4,5,6)}$	Active Power Supply Current (x9 Input to x9 Output)	-	30	mA
ICC1 $1^{(4,5,6)}$	Active Power Supply Current (x18 Input to x18 Output)	-	35	mA
Icc2 ${ }^{(4,7)}$	Standby Current	-	15	mA

NOTES:

1. Industrial temperature range product for the 10 ns speed grade is available as a standard device.
2. Measurements with $0.4 \leq \mathrm{VIN} \leq \mathrm{Vcc}$.
3. $\overline{\mathrm{OE}} \geq \mathrm{V}_{\mathrm{IH}}, 0.4 \leq$ VOUT $\leq \mathrm{VCC}$.
4. Tested with outputs open (lout $=0$).
5. RCLK and WCLK toggle at 20 MHz and data inputs switch at 10 MHz .
6. For $\times 18$ bus widths, typical $\mathrm{ICC1}=5+\mathrm{fs}+0.02^{*} \mathrm{CL} \mathrm{L}^{*} \mathrm{f}$ (in mA);
for $x 9$ bus widths, typical ICC1 $=5+0.775^{*} f s+0.02^{*} L^{*}$ fs (in mA).
These equations are valid under the following conditions:
$\mathrm{Vcc}=3.3 \mathrm{~V}, \mathrm{tA}=25^{\circ} \mathrm{C}$, fs = WCLK frequency = RCLK frequency (in MHz, using TTL levels), data switching at $\mathrm{fs} / 2, \mathrm{CL}=$ capacitive load (in pF).
7. All Inputs $=\mathrm{Vcc}-0.2 \mathrm{~V}$ or GND +0.2 V , except RCLK and WCLK, which toggle at 20 MHz .

CAPACITANCE $\left(\mathrm{TA}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}\right)$

Symbol	Parameter ${ }^{(1)}$	Conditions	Max.	Unit
$\mathrm{CIN}^{(2)}$	Input Capacitance	$\mathrm{V} \mathrm{ViN}^{(2)}$	10	pF
Cout $^{(1,2)}$	Output Capacitance	Vout $=0 \mathrm{~V}$	10	pF

NOTES:

1. With output deselected, ($\overline{\mathrm{OE}} \geq \mathrm{V} / \mathrm{H})$.
2. Characterized values, not currently tested.

AC ELECTRICAL CHARACTERISTICS ${ }^{(1)}$

(Commercial: $\mathrm{VCC}=3.3 \mathrm{~V} \pm 0.15 \mathrm{~V}, \mathrm{TA}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$; Industrial: $\mathrm{VCC}=3.3 \mathrm{~V} \pm 0.15 \mathrm{~V}, \mathrm{TA}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$; JEDEC JESD8-A compliant)

Symbol	Parameter	Commercial BGA \& TQFP		Commercial BGA \& TQFP		Com'I \& Ind' ${ }^{(2)}$ TQFP Only		Commercial TQFP Only		Unit
		IDT72V223L6 IDT72V233L6 IDT72V243L6 IDT72V253L6 IDT72V263L6 IDT72V273L6 IDT72V283L6 IDT72V293L6		IDT72V223L7-5 IDT72V233L7-5 IDT72V243L7-5 IDT72V253L7-5 IDT72V263L7-5 IDT72V273L7-5 IDT72V283L7-5 IDT72V293L7-5		IDT72V263L10 IDT72V273L10 IDT72V283L10 IDT72V293L10		IDT72V263L15 IDT72V273L15 IDT72V283L15 IDT72V293L15		
		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
fs	Clock Cycle Frequency	-	166	-	133.3	-	100	-	66.7	MHz
tA	Data Access Time ${ }^{(5)}$	1	4	$1^{(5)}$	5	$1^{(5)}$	6.5	$1^{(5)}$	10	ns
tclk	Clock Cycle Time	6	-	7.5	-	10	-	15	-	ns
tCLKH	Clock High Time	2.7	-	3.5	-	4.5	-	6	-	ns
tCLKL	Clock Low Time	2.7	-	3.5	-	4.5	-	6	-	ns
tos	DataSetup Time	2	-	2.5	-	3.5	-	4	-	ns
DH	DataHold Time	0.5	-	0.5	-	0.5	-	1	-	ns
tens	EnableSetup Time	2	-	2.5	-	3.5	-	4	-	ns
EENH	Enable Hold Time	0.5	-	0.5	-	0.5	-	1	-	ns
tLDS	LoadSetup Time	3	-	3.5	-	3.5	-	4	-	ns
セLD	Load Hold Time	0.5	-	0.5	-	0.5	-	1	-	ns
tRS	ResetPulse Width ${ }^{(3)}$	10	-	10	-	10	-	15	-	ns
tRSS	ResetSetup Time	15	-	15	-	15	-	15	-	ns
tRSR	Reset Recovery Time	10	-	10	-	10	-	15	-	ns
tRSF	Resetto Flag and Output Time	-	15	-	15	-	15	-	15	ns
tRTS	RetransmitSetup Time	3	-	3.5	-	3.5	-	4	-	ns
tolz	Output Enable to Outputin Low Z ${ }^{(4)}$	0	-	0	-	0	-	0	-	ns
toe	OutputEnable to Output Valid ${ }^{(5)}$	1	4	$1^{(5)}$	6	$1^{(5)}$	6	$1^{(5)}$	8	ns
tohz	Output Enable to Output in High Z ${ }^{(4,5)}$	1	4	$1^{(5)}$	6	$1^{(5)}$	6	$1^{(5)}$	8	ns
twFF	Write Clock to $\overline{\mathrm{FF}}$ or $\overline{\mathrm{R}}$	-	4	-	5	-	6.5	-	10	ns
tREF	Read Clock to $\overline{\mathrm{EF}}$ or $\overline{\mathrm{OR}}$	-	4	-	5	-	6.5	-	10	ns
tPAFA	Clock to Asynchronous Programmable Almost-Full Flag	-	10	-	12.5	-	16	-	20	ns
tPAFS	Write Clockto Synchronous Programmable Almost-Full Flag	-	4	-	5	-	6.5	-	10	ns
tPAEA	Clock to Asynchronous Programmable Almost-Empty Flag	-	10	-	12.5	-	16	-	20	ns
tPAES	Read Clockto Synchronous Programmable Almost-Empty Flag	-	4	-	5	-	6.5	-	10	ns
tHF	Clock to $\overline{\mathrm{FF}}$	-	10	-	12.5	-	16	-	20	ns
tSKEW1	Skew time between RCLK and WCLK for $\overline{\mathrm{EF}} / \overline{\mathrm{OR}}$ and $\overline{\mathrm{FF}} / \overline{\mathrm{R}}$	4	-	5	-	7	-	9	-	ns
tSkEW2	Skew time between RCLK and WCLK for $\overline{\mathrm{AAE}}$ and $\overline{\mathrm{PAF}}$	5	-	7	-	10	-	14	-	ns

NOTES:

1. All AC timings apply to both Standard IDT mode and First Word Fall Through mode.
2. Industrial temperature range product for the 10 ns is available as a standard device. All other speed grades are available by special order.
3. Pulse widths less than minimum values are not allowed.
4. Values guaranteed by design, not currently tested.
5. TQFP package only: for speed grades 7.5 ns , 10 ns and 15 ns the minimum for $\mathrm{tA}, \mathrm{tOE}$, and tOHZ is 2 ns .
6. The IDT72V223/72V233/72V243/72V253 are only available in 6 ns and 7.5 ns speed grades.

AC ELECTRICAL CHARACTERISTICS ${ }^{(1)}$ - ASYNCHRONOUS TIMING

(Commercial: $\mathrm{VCC}=3.3 \mathrm{~V} \pm 0.15 \mathrm{~V}, \mathrm{TA}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$;Industrial: $\mathrm{VCC}=3.3 \mathrm{~V} \pm 0.15 \mathrm{~V}, \mathrm{TA}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$; JEDEC JESD8-A compliant)

Symbol	Parameter	Commercial				Unit
		IDT72V223L6 IDT72V233L6 IDT72V243L6 IDT72V253L6 IDT72V263L6 IDT72V273L6 IDT72V283L6 IDT72V293L6		IDT72V223L7-5 IDT72V233L7-5 IDT72V243L7-5 IDT72V253L7-5 IDT72V263L7-5 IDT72V273L7-5 IDT72V283L7-5 IDT72V293L7-5		
		Min.	Max.	Min.	Max.	
$\mathrm{fA}^{(4)}$	Cycle Frequency (Asynchronous mode)	-	100	-	83	MHz
taA ${ }^{(4)}$	Data Access Time	0.6	8	0.6	10	ns
tcyc ${ }^{(4)}$	Cycle Time	10	-	12	-	ns
tcyH ${ }^{(4)}$	Cycle HIGH Time	4.5	-	5	-	ns
tcy(${ }^{(4)}$	Cycle LOW Time	4.5	-	5	-	ns
tRPE ${ }^{(4)}$	Read Pulse after EF HIGH	8	-	10	-	ns
tFFA ${ }^{(4)}$	Clock to Asynchronous FF	-	8	-	10	ns
tEFA ${ }^{(4)}$	Clock to Asynchronous $\overline{\mathrm{EF}}$	-	8	-	10	ns
tPAFA ${ }^{(4)}$	Clock to Asynchronous Programmable Almost-Full Flag	-	8	-	10	ns
TPAEA ${ }^{(4)}$	Clock to Asynchronous Programmable Almost-Empty Flag	-	8	-	10	ns

NOTES:

1. All AC timings apply to both Standard IDT mode and First Word Fall Through mode.
2. Pulse widths less than minimum values are not allowed.
3. Values guaranteed by design, not currently tested.
4. Parameters apply to the BGA package only.

AC TEST CONDITIONS

Input Pulse Levels	GND to 3.0V
Input Rise/Fall Times	$3 \mathrm{~ns}{ }^{(1)}$
Input Timing Reference Levels	1.5 V
Output Reference Levels	1.5 V
Output Load for tCLK $=10 \mathrm{~ns}, 15 \mathrm{~ns}$	See Figure 2a
Output Load fortCLK $=6 \mathrm{~ns}, 7.5 \mathrm{~ns}$	See Figure 2b \& 2c

NOTE:

1. For 166 Mhz and 133 MHz operation input rise/fall times are 1.5 ns .

AC TEST LOADS-10ns, 15 ns Speed Grades

Figure 2a. Output Load

* Includes jig and scope capacitances.

AC TEST LOADS-6ns, 7.5ns Speed Grade

Figure 2b. AC Test Load

Figure 2c. Lumped Capacitive Load, Typical Derating

OUTPUT ENABLE \& DISABLE TIMING

FUNCTIONAL DESCRIPTION

TIMING MODES: IDT STANDARD vs FIRST WORD FALL THROUGH (FWFT) MODE

The IDT72V223/72V233/72V243/72V253/72V263/72V273/72V283/ 72V293 supporttwo differenttiming modes of operation:IDTStandard mode or First Word Fall Through (FWFT) mode. The selection of which mode will operate is determined during Master Reset, by the state of the FWFT/SI input.

If, at the time of Master Reset, FWFT/SI is LOW, then IDT Standard mode will be selected. This mode uses the Empty Flag ($\overline{\mathrm{EF}})$ to indicate whether or not there are any words present inthe FIFO. It also uses the Full Flag function ($\overline{\mathrm{FF}}$) to indicate whether or not the FIFO has any free space for writing. In IDT Standard mode, every word read from the FIFO, including the first, must be requested using the Read Enable ($\overline{\mathrm{REN}}$) and RCLK.

If, at the time of Master Reset, FWFT/SI is HIGH, then FWFT mode will be selected. This mode uses Output Ready ($\overline{\mathrm{OR}})$ to indicate whether or not there is valid data at the data outputs $\left(Q_{n}\right)$. It also uses Input Ready $(\overline{\mathrm{R}})$ to indicate whether or not the FIFO has any free space for writing. In the FWFT mode, thefirstword writtentoanempty FIFO goes directly to Qnafterthree RCLKrising edges, $\overline{R E N}=$ LOW is notnecessary. Subsequent words must be accessed using the Read Enable ($\overline{\mathrm{REN}})$ and RCLK.

Various signals, bothinputand outputsignals operatedifferently depending on whichtiming mode is in effect.

IDT STANDARD MODE

In this mode, the status flags, $\overline{\mathrm{FF}}, \overline{\mathrm{PAF}}, \overline{\mathrm{HF}}, \overline{\mathrm{PAE}}$, and $\overline{\mathrm{EF}}$ operate in the manneroutlined in Table 3. To write datainto to the FIFO, Write Enable ($\overline{\mathrm{WEN}})$ mustbeLOW. DatapresentedtotheDATAINlines will beclockedintotheFIFO on subsequent transitions of the Write Clock (WCLK). After the first write is performed, the Empty Flag ($\overline{\mathrm{EF}}$) will go HIGH. Subsequent writes will continue to fill up the FIFO. The Programmable Almost-Empty flag ($\overline{\mathrm{PAE}})$ will go HIGH after $n+1$ words have been loaded into the FIFO, where n is the empty offset value. The default setting for these values are stated in the footnote of Table 2. This parameter isalsouserprogrammable. See sectionon ProgrammableFlag OffsetLoading.

If one continued to write data into the FIFO, and we assumed no read operations were taking place, the Half-Fullflag $(\overline{\mathrm{HF}})$ would toggle to LOW once (D/2+1) wordswere written intotheFIFO. Ifx18 Inputorx18OutputbusWidth is selected, $(\mathrm{D} / 2+1)=$ the 257th word for the IDT72V223, 513rd word for IDT72V233, 1,025th wordforthe IDT72V243,2,049th wordfortheIDT72V253, 4,097th wordfor the IDT72V263,8,193th wordforIDT72V273, 16,385th word forthe IDT72V283 and 32,769th word for the IDT72V293. If both x9 Input and x9 Output bus Widths are selected, $(D / 2+1)=$ the 513 rd word for the IDT72V223, 1,025th word for IDT72V233, 2,049th word for the IDT72V243, 4,097th word for the IDT72V253, 8,193rd word for the IDT72V263, 16,385th word for IDT72V273, 32,769th word for the IDT72V283 and 65,537th word for the IDT72V293. Continuing to write data into the FIFO will cause the Programmable Almost-Full flag ($\overline{\mathrm{PAF}}$) to go LOW. Again, if no reads are performed, the $\overline{P A F}$ will go LOW after (D-m) writes tothe FIFO. Ifx18Input or x18Outputbus Width is selected, $(D-m)=(512-m)$ writes for the IDT72V223, ($1,024-\mathrm{m}$) writes for the IDT72V233, (2,048-m) writes for the IDT72V243 and ($4,096-\mathrm{m}$) writes for the IDT72V253, $(8,192-\mathrm{m})$ writes for the IDT72V263, ($16,384-\mathrm{m}$) writes for the IDT72V273, ($32,768-\mathrm{m}$) writes for the IDT72V283 and ($65,536-\mathrm{m}$) writes for the IDT72V293. If both $x 9$ Input and x 9 Output bus Widths are selected, (D-m) $=(1,024-m)$ writes forthe IDT72V223, $(2,048-m)$ writes for the IDT72V233, (4,096-m) writes for the IDT72V243, (8,192-m) writes forthe IDT72V253, (16,384-m) writes for the IDT72V263, (32,768-m) writesfortheIDT72V273,(65,536-m) writesfortheIDT72V283and(131,072-m)
writesfortheIDT72V293. Theoffset "m" isthefull offsetvalue. The defaultsetting forthese values are stated in the footnote of Table2. This parameter is also user programmable. See section on Programmable Flag Offset Loading.

Whenthe FIFO is full, the Full Flag ($\overline{\mathrm{FF}}$) will go LOW, inhibiting further write operations. Ifno reads are performedafterareset, $\overline{\mathrm{FF}}$ will goLOW afterD writes to the FIFO. Ifthe x18 Inputorx18OutputbusWidth is selected, $D=512$ writes for the IDT72V223, 1,024 writes for the IDT72V233, 2,048 writes for the IDT72V243, 4,096 writes for the IDT72V253, 8,192 writes for the IDT72V263, 16,384 writes for the IDT72V273,32,768 writes for the IDT72V283 and65,536 writesfortheIDT72V293. Ifboth x9 Inputand $\times 9$ OutputbusWidths are selected, $D=1024$ writes for the IDT72V223, 2,048 writes for the IDT72V233, 4,096 writes for the IDT72V243, 8,192 writes for the IDT72V253, 16,384 writes for the IDT72V263, 32,768 writes for the IDT72V273, 65,536 writes for the IDT72V283 and 131,072 writes for the IDT72V293, respectively.

If the FIFO is full, the first read operation will cause $\overline{\mathrm{FF}}$ to go HIGH. Subsequentread operations will cause $\overline{\mathrm{PAF}}$ and $\overline{\mathrm{FF}}$ to goHIGH attheconditions described in Table 3. Iffurther read operations occur, without write operations, $\overline{\text { PAE }}$ will go LOW when there are n words in the FIFO, where n is the empty offsetvalue. Continuing read operations will causethe FIFO to becomeempty. Whenthe lastword has been read from the FIFO, the $\overline{E F}$ will go LOW inhibiting further read operations. $\bar{R} E N$ is ignored when the FIFO is empty.

When configured in IDT Standardmode, the $\overline{\mathrm{EF}}$ and $\overline{\mathrm{FF}}$ outputs are double register-buffered outputs.

Relevant timing diagrams for IDT Standard mode can be found in Figure 7, 8 and 11.

FIRST WORD FALL THROUGH MODE (FWFT)

In this mode, the status flags, $\overline{\mathrm{R}}, \overline{\mathrm{PAF}}, \overline{\mathrm{HF}}, \overline{\mathrm{PAE}}$, and $\overline{\mathrm{OR}}$ operate in the manner outlined in Table 4. To write data into the FIFO, $\overline{\mathrm{WEN}}$ must be LOW. DatapresentedtotheDATAINlines will beclocked intotheFIFO onsubsequent transitions of WCLK. After the firstwrite is performed, the Output Ready ($\overline{\mathrm{OR}})$ flag will goLOW. Subsequent writes will continue to fill up the FIFO. $\overline{\text { PAE }}$ will go HIGH after n+2 words have been loaded into the FIFO, where n is the empty offsetvalue. The defaultsettingforthese valuesare stated inthefootnote of Table 2. This parameter is also user programmable. See section on Programmable Flag OffsetLoading.

If one continued to write data into the FIFO, and we assumed no read operations were taking place, the $\overline{\mathrm{HF}}$ would toggle to LOW once the $(\mathrm{D} / 2+2)$ wordswere writtenintotheFIFO. Ifx18Inputorx18OutputbusWidthis selected, $(D / 2+2)=$ the 258th word for the IDT72V223, 514th word for IDT72V233, 1,026th word for the IDT72V243, 2,050th word for the IDT72V253, 4,098th word for the IDT72V263, 8, 194th word for IDT72V273, 16,386th word for the IDT72V283 and 32,770th word for the IDT72V293. If both $x 9$ Input and $x 9$ OutputbusWidths are selected, $(\mathrm{D} / 2+2)=$ the514th wordforthe IDT72V223, 1,026th word for IDT72V233,2,050th word for the IDT72V243, 4,098th word for the IDT72V253, 8,194th word for the IDT72V263, 16,386th word for IDT72V273, 32,770th word for the IDT72V283 and 65,538th word for the IDT72V293. Continuingto write dataintothe FIFO will causethe $\overline{\text { PAF }}$ togoLOW. Again, if no reads are performed, the $\overline{\text { PAF }}$ will go LOW after (D-m) writes to the FIFO. Ifx18Inputorx18OutputbusWidth is selected, $(D-m)=(513-m)$ writes for the IDT72V223, (1,025-m) writes for the IDT72V233, (2,049-m) writes for the IDT72V243, (4,097-m) writes for the IDT72V253, (8,193-m) writes for the IDT72V263, (16,385-m) writes for the IDT72V273, (32,769-m) writes for the IDT72V283 and (65,537-m) writes forthe IDT72V293. If both $x 9$ Input and $x 9$ OutputbusWidths are selected, (D-m) $=(1,025-m)$ writes for the IDT72V223, ($2,049-m$) writes for the IDT72V233, $(4,097-m)$ writes for the IDT72V243, ($8,193-\mathrm{m}$) writes for the IDT72V253, ($16,385-\mathrm{m}$) writes for the IDT72V263,
(32,769-m) writes for the IDT72V273, (65,537-m) writes for the IDT72V283 and (131,073-m) writes for the IDT72V293. The offsetm is the full offset value. The default setting for these values are stated in the footnote of Table 2.

Whenthe FIFO isfull, the Input Ready ($\overline{\mathrm{IR}})$ flag will goHIGH, inhibitingfurther write operations. If no reads are performed after a reset, $\overline{\mathrm{R}}$ will go HIGH after D writes to the FIFO. Ifx18 Inputorx18OutputbusWidth is selected, $D=513$ writes for the IDT72V223, 1,025 writes for the IDT72V233, 2,049 writes for the IDT72V243, 4,097 writes for the IDT72V253,8,193 writes for the IDT72V263, 16,385 writes for the IDT72V273,32,769 writes for the IDT72V283 and 65,537 writesfortheIDT72V293. Ifboth x9 Inputandx9OutputbusWidths are selected, $D=1,025$ writes for the IDT72V223, 2,049 writes for the IDT72V233, 4,097 writes for the IDT72V243, 8,193 writes for the IDT72V253, 16,385 writes for the IDT72V263, 32,769 writes for the IDT72V273, 65,537 writes for the IDT72V283 and 131,073 writes for the IDT72V293, respectively. Notethatthe additional word in FWFT mode is due to the capacity of the memory plus output register.

If the FIFO is full, the first read operation will cause the $\overline{\mathrm{R}}$ flag to go LOW. Subsequent read operations will cause the $\overline{\mathrm{PAF}}$ and $\overline{\mathrm{HF}}$ to go HIGH at the conditions described in Table 4. Iffurther read operations occur, without write operations, the $\overline{\mathrm{PAE}}$ will go LOW whenthere aren +1 words inthe FIFO, where n is the empty offset value. Continuing read operations will cause the FIFO to become empty. When the last word has been read from the FIFO, $\overline{\mathrm{OR}}$ will go HIGH inhibiting further read operations. $\overline{\mathrm{REN}}$ is ignored whentheFIFO is empty.

When configured in FWFT mode, the $\overline{\text { OR }}$ flag output is triple registerbuffered, and the \bar{R} flag output is double register-buffered.

Relevanttiming diagrams forFWFTmodecanbe found in Figure 9, 10 and 12.

PROGRAMMING FLAG OFFSETS

Full and Empty Flagoffsetvalues are user programmable. The IDT72V223/ 72V233/72V243/72V253/72V263/72V273/72V283/72V293 has internal registers for these offsets. There are eight default offset values selectable during MasterReset. These offset values are showninTable2. Offsetvaluescanalso
be programmed into the FIFO in one of two ways; serial or parallel loading method. The selection of the loading method is done using the $\overline{L D}($ Load) pin. During Master Reset, the state of the $\overline{\mathrm{LD}}$ input determines whether serial or parallelflag offsetprogramming is enabled. AHIGHon $\overline{\mathrm{D}}$ during Master Reset selects serial loading of offsetvalues. ALOW on $\overline{L D}$ during Master Resetselects parallelloading of offset values.

In addition to loading offset values into the FIFO, it is also possible to read the current offset values. Offset values can be read via the parallel output port Q0-Qn, regardless of the programming mode selected (serial or parallel). It is not possible to read the offset values in serial fashion.

Figure 3, ProgrammableFlag OffsetProgrammingSequence, summaries the control pins and sequence forboth serial and parallel programming modes. For a more detailed description, see discussion that follows.

Theoffsetregisters may be programmed (and reprogrammed) any time after Master Reset, regardless of whether serial or parallel programming has been selected. Valid programming ranges are from 0 to $\mathrm{D}-1$.

SYNCHRONOUS vs ASYNCHRONOUS PROGRAMMABLE FLAG TIMING SELECTION

The IDT72V223/72V233/72V243/72V253/72V263/72V273/72V283/ 72 V 293 can be configured during the Master Reset cycle with either synchronous or asynchronous timing for $\overline{\mathrm{PAF}}$ and $\overline{\mathrm{PAE}}$ flags by use of the PFM pin.

If synchronous $\overline{\mathrm{PAF}} / \overline{\mathrm{PAE}}$ configuration is selected (PFM, HIGH during $\overline{\mathrm{MRS}})$, the PAF is asserted and updated on the rising edge of WCLK only and not RCLK. Similarly, $\overline{\text { PAE }}$ is asserted and updated on the rising edge of RCLK only and notWCLK. For detail timing diagrams, see Figure 18 for synchronous $\overline{\mathrm{PAF}}$ timing and Figure 19 for synchronous $\overline{\mathrm{PAE}}$ timing.

If asynchronous $\overline{\mathrm{PAF}} / \overline{\mathrm{PAE}}$ configuration is selected (PFM, LOW during $\overline{\mathrm{MRS}}$), the PAF is asserted LOW ontheLOW-to-HIGH transition of WCLK and $\overline{\text { PAF }}$ is reset to HIGH on the LOW-to-HIGH transition of RCLK. Similarly, $\overline{\text { PAE }}$ is asserted LOW ontheLOW-to-HIGHtransition of RCLK. $\overline{\text { PAE is resetto HIGH }}$ ontheLOW-to-HIGHtransition ofWCLK. For detail timing diagrams, see Figure 20 for asynchronous $\overline{\mathrm{PAF}}$ timing and Figure21 for asynchronous $\overline{\mathrm{PAE}}$ timing.

TABLE 2 - DEFAULT PROGRAMMABLE FLAG OFFSETS

L̄D	FSELO	FSEL1	$\begin{array}{r} \text { IDT72V223 } \\ \text { IDT72V233 } \\ \hline \hline \text { Offsets n,m } \end{array}$	IDT72V243		$\begin{aligned} & \text { IDT72V253 } \\ & \text { IDT72V263 } \\ & \text { IDT72V273 } \end{aligned}$	IDT72V283		IDT72V293
				Offsets n,m		Offsets n,m	Offsets n,m		Offsets n,m
			All Modes	All Other Modes	$\begin{gathered} \text { x9 to x9 } \\ \text { Mode } \end{gathered}$	All Modes	All Other Modes	$\begin{aligned} & \text { x9 to x9 } \\ & \text { Mode } \end{aligned}$	All Modes
L	L	H	511	511	511	511	511	16,383	16,383
L	H	L	255	255	255	255	255	8,191	8,191
L	H	H	63	63	63	63	63	4,095	4,095
H	L	H	15	15	31	31	31	2,047	2,047
H	L	L	31	31	1,023	1,023	1,023	1,023	1,023
H	H	L	7	7	15	15	15	511	511
H	H	H	3	3	7	7	7	255	255
L	I	L	127	127	127	127	127	127	127
H	X	X	Serial Programming Mode ${ }^{(3)}$						
L	X	X	Parallel Programming Mode ${ }^{(4)}$						

NOTES:

1. $\mathrm{n}=$ e empty offset for $\overline{\mathrm{PAE}}$.
2. $m=$ full offset for PAF.
3. As well as selecting serial programming mode, one of the default values will also be loaded depending on the state of FSELO \& FSEL1.
4. As well as selecting parallel programming mode, one of the default values will also be loaded depending on the state of FSELO \& FSEL1.

TABLE 3 - STATUS FLAGS FOR IDT STANDARD MODE

IW = OW = x9	\square	IDT72V223	IDT72V233	IDT72V243					
$\begin{aligned} & \text { IW } \neq \text { OW or } \\ & \text { IW }=0 W=x 18 \end{aligned}$	IDT72V223	IDT72V233	IDT72V243	IDT72V253	$\overline{\mathrm{FF}}$	$\overline{\text { PAF }}$	$\overline{\mathrm{HF}}$	$\overline{\text { PAE }}$	$\overline{E F}$
Number of Words in FIFO ${ }^{(2)}$	0	0	0	0	H	H	H	L	L
	1 to n	1 to n	1 to n	1 to n	H	H	H	L	H
	$(\mathrm{n}+1)$ to 256	$(\mathrm{n}+1)$ to 512	$(\mathrm{n}+1)$ to 1,024	$(\mathrm{n}+1)$ to 2,048	H	H	H	H	H
	257 to (512-(m+1))	513 to (1,024-(m+1))	1,025 to (2,048-(m+1))	2,049 to (4,096-(m+1))	H	H	L	H	H
	(512-m) to 511	(1,024-m) to 1,023	(2,048-m) to 2,047	$(4,096-m)$ to 4,095	H	L	L	H	H
	512	1,024	2,048	4,096	L	L	L	H	H

IW = OW = x9	IDT72V253	IDT72V263	IDT72V273	IDT72V283	IDT72V293					
$\begin{array}{\|l\|} \hline \text { IW } \neq \text { OW or } \\ \text { IW }=O W=x 18 \\ \hline \end{array}$	IDT72V263	IDT72V273	IDT72V283	IDT72V293		$\overline{F F}$	$\overline{\text { PAF }}$	$\overline{\mathrm{HF}}$	$\overline{\text { PAE }}$	$\overline{E F}$
Number of Words in FIFO ${ }^{(2)}$	0	0	0	0	0	H	H	H	L	L
	1 to n	H	H	H	L	H				
	$(\mathrm{n}+1)$ to 4,096	$(\mathrm{n}+1)$ to 8,192	$(\mathrm{n}+1)$ to 16,384	$(\mathrm{n}+1)$ to 32,768	$(\mathrm{n}+1)$ to 65,536	H	H	H	H	H
	4,097 to (8,192-(m+1))	8,193 to (16,384-(m+1))	16,385 to (32,768-(m+1))	32,769 to (65,536-(m+1))	65,537 to (131,072-(m+1))	H	H	L	H	H
	(8,192-m) to 8,191	(16,384-m) to 16,383	(32,768-m) to 32,767	(65,536-m) to 65,535	(131,072-m) to 131,071	H	L	L	H	H
	8,192	16,384	32,768	65,536	131,072	L	L	L	H	H

NOTE:

1. See Table 2 for values for n, m.

TABLE 4 - STATUS FLAGS FOR FWFT MODE

IW = OW = x9	\square	IDT72V223	IDT72V233	IDT72V243					
$\begin{aligned} & \text { IW } \neq \text { OW or } \\ & \text { IW }=\text { OW }=x 18 \end{aligned}$	IDT72V223	IDT72V233	IDT72V243	IDT72V253	$\overline{\mathrm{IR}}$	$\overline{\text { PAF }}$	$\overline{\mathrm{HF}}$	$\overline{\text { PAE }}$	$\overline{\mathrm{OR}}$
Number of Words in FIFO ${ }^{(2)}$	0	0	0	0	L	H	H	L	H
	1 to $\mathrm{n}+1$	1 to $\mathrm{n}+1$	1 to $\mathrm{n}+1$	1 to $\mathrm{n}+1$	L	H	H	L	L
	$(\mathrm{n}+2)$ to 257	$(\mathrm{n}+2)$ to 513	$(\mathrm{n}+2)$ to 1,025	$(\mathrm{n}+2)$ to 2,049	L	H	H	H	L
	258 to (513-(m+1))	514 to (1,025-(m+1))	1,026 to (2,049-(m+1))	2,050 to (4,097-(m+1))	L	H	L	H	L
	(513-m) to 512	(1,025-m) to 1,024	(2,049-m) to 2,048	(4,097-m) to 4,096	L	L	L	H	L
	513	1,025	2,049	4,097	H	L	L	H	L

IW = OW = x9	IDT72V253	IDT72V263	IDT72V273	IDT72V283	IDT72V293					
$\begin{aligned} & \text { IW } \neq \text { OW or } \\ & \text { IW }=\text { OW }=\times 18 \end{aligned}$	IDT72V263	IDT72V273	IDT72V283	IDT72V293		$\overline{\mathrm{IR}}$	$\overline{\text { PAF }}$	$\overline{\mathrm{HF}}$	$\overline{\text { PAE }}$	$\overline{\mathrm{OR}}$
Number of Words in FIFO ${ }^{(2)}$	0	0	0	0	0	L	H	H	L	H
	1 to $\mathrm{n}+1$	L	H	H	L	L				
	$(\mathrm{n}+2)$ to 4,097	$(\mathrm{n}+2)$ to 8,193	$(\mathrm{n}+2)$ to 16,385	$(\mathrm{n}+2)$ to 32,769	$(\mathrm{n}+2)$ to 65,537	L	H	H	H	L
	4,098 to (8,193-(m+1))	8,194 to (16,385-(m+1))	16,386 to (32,769-(m+1))	32,770 to (65,537-(m+1))	65,538 to (131,073-(m+1))	L	H	L	H	L
	(8,193-m) to 8,192	(16,385-m) to 16,384	(32,769-m) to 32,768	(65,537-m) to 65,536	$(131,073-\mathrm{m})$ to 131,072	L	L	L	H	L
	8,193	16,385	32,769	65,537	131,073	H	L	L	H	L

NOTE:

1. See Table 2 for values for n, m
2. Number of Words in FIFO = FIFO Depth + Output Register

2nd Parallel Offset Write/Read Cycle

				D/Q0			
EMPTY OFFSET REGISTER							
16	15	14	13	12	11	10	9

3rd Parallel Offset Write/Read Cycle

4th Parallel Offset Write/Read Cycle

IDT72V223/72V233/72V243/72V253/72V263/ 72V273/72V283/72V293 ${ }^{(2)}$ - x9 Bus Width

2nd Parallel Offset Write/Read Cycle

4th Parallel Offset Write/Read Cycle

5th Parallel Offset Write/Read Cycle

6th Parallel Offset Write/Read Cycle

IDT72V293 ${ }^{(2)}$ - x9 Bus Width

x9 to $\mathbf{x 9}$ Mode	All Other Modes
\# of Bits Used:	\# of Bits Used:
10 bits for the IDT72V223	9 bits for the IDT72V223
11 bits for the IDT72V233	10 bits for the IDT72V233
12 bits for the IDT72V243	11 bits for the IDT72V243
13 bits for the IDT72V253	12 bits for the IDT72V253
14 bits for the IDT72V263	13 bits for the IDT72V263
15 bits for the IDT72V273	14 bits for the IDT72V273
16 bits for the IDT72V283	15 bits for the IDT72V283
17 bits for the IDT72V293	16 bits for the IDT72V293
Note: All unused bits of the	Note: All unused bits of the
LSB \& MSB are don't care	LSB \& MSB are don't care

4666 drw06

NOTES:

1. When programming the IDT72V293 with an input bus width of x 9 and output bus width of $\mathrm{x} 18,4$ write cycles will be required. When Reading the IDT72V293 with an output bus width of $x 9$ and input bus width of $x 18,4$ read cycles will be required.
2. A total of 6 program/ read cycles will be required for $x 9$ bus width if both the input and output bus widths are set to $x 9$.

Figure 3. Programmable Flag Offset Programming Sequence

$\overline{\text { LD }}$	$\overline{\text { WEN }}$	$\overline{R E N}$	$\overline{\text { SEN }}$	WCLK	RCLK	IDT72V223, IDT72V243, IDT72V263 IDT72V283	$\begin{aligned} & 72 \mathrm{~V} 233 \\ & 72 \mathrm{~V} 253 \\ & \text { 72V273 } \\ & 72 \mathrm{~V} 293 \end{aligned}$
0	0	1	1		X	Parallel write Empty Offse Empty Offse Full Offset (L Full Offset (egisters: B) B)
0	1	0	1	X		Parallel read Empty Offse Empty Offse Full Offset (L Full Offset (registers: B) B)
						x9 to x9 Mode	All Other Modes
0	1	1	0		X	Serial shift into registers: 20 bits for the IDT72V223 22 bits for the IDT72V233 24 bits for the IDT72V243 26 bits for the IDT72V253 28 bits for the IDT72V263 30 bits for the IDT72V273 32 bits for the IDT72V283 34 bits for the IDT72V293 1 bit for each rising WCLK edge Starting with Empty Offset (LSB) Ending with Full Offset (MSB)	Serial shift into registers: 18 bits for the IDT72V223 20 bits for the IDT72V233 22 bits for the IDT72V243 24 bits for the IDT72V253 26 bits for the IDT72V263 28 bits for the IDT72V273 30 bits for the IDT72V283 32 bits for the IDT72V293 1 bit for each rising WCLK edge Starting with Empty Offset (LSB) Ending with Full Offset (MSB)
X	1	1	1	X	X	No Operation	
1	0	X	X		X	Write Memory	
1	X	0	X	X		Read Memory	
1	1	1	X	X	X	No	ation

NOTES:

1. The programming method can only be selected at Master Reset.
2. Parallel reading of the offset registers is always permitted regardless of which programming method has been selected.
3. The programming sequence applies to both IDT Standard and FWFT modes.

Figure 3. Programmable Flag Offset Programming Sequence (Continued)

SERIAL PROGRAMMING MODE

If Serial Programming mode has been selected, as described above, then programming of $\overline{\mathrm{PAE}}$ and $\overline{\mathrm{PAF}}$ values canbe achieved by using a combination ofthe $\overline{L D}, \overline{S E N}$, WCLK andSl inputpins. Programming $\overline{\text { PAE }}$ and $\overline{\text { PAF }}$ proceeds as follows: when $\overline{\mathrm{LD}}$ and $\overline{\mathrm{SEN}}$ are set LOW, data on the SI input are written, onebitforeachWCLKrisingedge, starting withthe Empty OffsetLSB andending with the Full Offset MSB. If $\times 9$ to $\times 9$ mode is selected, a total of 20 bits for the IDT72V223, 22 bits for the IDT72V233, 24 bits for the IDT72V243, 26 bits for the IDT72V253, 28 bits forthe IDT72V263,30 bits for the IDT72V273, 32 bits for the IDT72V283 and 34 bits for the IDT72V293. For any other mode of operation (that includes x18 bus width on either the Input or Output), minus2 bits from the values above. So, a total of 18 bits for the IDT72V223, 20 bits for the IDT72V233, 22 bits forthe IDT72V243, 24 bits for the IDT72V253, 26 bits for the IDT72V263, 28 bits for the IDT72V273, 30 bits for the IDT72V283 and 32 bits for the IDT72V293. See Figure 15, Serial Loading of Programmable Flag Registers, for the timing diagram for this mode.

Using the serial method, individual registers cannot be programmed selectively. $\overline{\mathrm{PAE}}$ and $\overline{\mathrm{PAF}}$ can show a valid status only after the complete set of bits (for all offset registers) has been entered. The registers can be reprogrammedas long as the complete set of new offsetbits is entered. When $\overline{\mathrm{LD}}$ is LOW and $\overline{\mathrm{SEN}}$ is HIGH, no serial write to the registers can occur.

Write operations to the FIFO are allowed before and during the serial programming sequence. Inthis case, the programming of all offsetbits does not have to occur at once. A selectnumber of bits can be writtento the Sl input and then, by bringing $\overline{\mathrm{LD}}$ and $\overline{\mathrm{SEN}}$ HIGH, data can be written to FIFO memory via Dn by toggling $\overline{W E N}$. When $\overline{W E N}$ is brought HIGH with $\overline{\mathrm{LD}}$ and $\overline{\text { SEN }}$ restored to a LOW, the next offset bit in sequence is written to the registers viaSI. If an interruption of serial programming is desired, itis sufficienteithertoset $\overline{\mathrm{D}}$ LOW and deactivate $\overline{\mathrm{SEN}}$ or to set $\overline{\mathrm{SEN}} \mathrm{LOW}$ and deactivate $\overline{\mathrm{LD}}$. Once $\overline{\mathrm{LD}}$ and $\overline{\mathrm{SEN}}$ are both restored to a LOW level, serial offset programming continues.

From the time serial programming has begun, neither programmable flag will be valid until the full set of bits required to fill all the offset registers has been written. Measuring from the rising WCLKedge that achieves the above criteria; $\overline{\text { PAF }}$ will be valid aftertwo more rising WCLK edges plustPAF, $\overline{\text { PAE }}$ will be valid after the next two rising RCLK edges plus tPAE plus tSKEW2.

It is not possible to read the flag offset values in a serial mode.

PARALLEL PROGRAMMING MODE

If Parallel Programming modehas been selected, as described above, then programming of $\overline{P A E}$ and $\overline{P A F}$ values can beachieved by using a combination of the $\overline{L D}$, WCLK, $\overline{W E N}$ and Dn inputpins. Ifthe FIFO is configuredfor an input bus width and output bus width both set to $\times 9$, then the total number of write operations required to program the offset registers is 4 for the IDT72V223/ 72V233/72V243/72V253/72V263/72V273/72V283 or 6 for the IDT72V293. Refer to Figure 3, Programmable Flag Offset Programming Sequence, for a detailed diagram of the data input lines Do-Dn used during parallel programming. If the FIFO is configured for an inputto outputbus width of x 9 to $\times 18, \mathrm{x} 18$ to $\times 9$ orx18 to $\times 18$, then the following number of write operations are required. For an input bus width of x 18 a total of 2 write operations will be required to program the offset registers for the IDT72V223/72V233/72V243/72V253/ 72V263/72V273/72V283/72V293. For an inputbus width of $x 9$ a total of 4 write operations will be required to program the offset registers for the IDT72V223/ 72V233/72V243/72V253/72V263/72V273/72V283/72V293. Referto Figure 3, Programmable Flag OffsetProgramming Sequence, for a detailed diagram.

For example, programming $\overline{\text { PAE }}$ and $\overline{\text { PAF }}$ on the IDT72V293 configured for $x 18$ bus width proceeds as follows: when $\overline{\mathrm{LD}}$ and $\overline{\mathrm{WEN}}$ are setLOW, data onthe inputs Dnare written intothe LSB ofthe Empty Offset Registeronthe first

LOW-to-HIGH transition of WCLK. Uponthe second LOW-to-HIGH transition ofWCLK, dataare written intothe MSB of the Empty Offset Register. Onthethird LOW-to-HIGHtransition ofWCLK, dataare written intothe LSB ofthe Full Offset Register. Onthe fourth LOW-to-HIGHtransition ofWCLK, data are written into theMSB ofthe Full OffsetRegister. Thefifth LOW-to-HIGH transition ofWCLK, data are written, once again to the Empty Offset Register. Note thatforx9 bus width, one extraWrite cycle is requiredforboththe Empty Offset Register and Full Offset Register. See Figure 16, Paralle/ Loading of Programmable Flag Registers, for the timing diagram for this mode.

The act of writing offsets in parallel employs a dedicated write offset register pointer. The act of reading offsets employs a dedicated read offset register pointer. The two pointers operate independently; however, a read and a write shouldnotbeperformed simultaneously totheoffset registers. A Master Reset initializes both pointers to the Empty Offset (LSB) register. A Partial Resethas no effect on the position of these pointers. Refer to Figure 3, Programmable Flag OffsetProgramming Sequence, for a detailed diagram of the data input lines Do-Dn used during parallel programming.

Write operations to the FIFO are allowed before and during the parallel programming sequence. In this case, the programming of all offset registers does not have to occur at one time. One, two or more offset registers can be written and then by bringing $\overline{\mathrm{LD}} \mathrm{HIGH}$, write operations can be redirected to the FIFO memory. When $\overline{\mathrm{LD}}$ is setLOW again, and $\overline{W E N}$ isLOW, thenextoffset register in sequence is writtento. As an alternative to holding $\overline{W E N} L O W$ and toggling $\overline{\mathrm{LD}}$, parallel programming can also be interrupted by setting $\overline{\mathrm{L}} \mathrm{LOW}$ andtoggling $\overline{W E N}$.

Note that the status of a programmable flag ($\overline{\mathrm{PAE}}$ or $\overline{\mathrm{PAF}}$) output is invalid during the programming process. From the time parallel programming has begun, a programmable flag output will notbe valid until the appropriate offset word has been written to the register(s) pertaining to thatflag. Measuring from the risingWCLK edge that achieves the above criteria; $\overline{\mathrm{PAF}}$ will be valid after two morerisingWCLKedgesplustPAF, $\overline{\text { PAE }}$ will be validafterthenextwo rising RCLK edges plus tPAE plus tSKEW2.

The act of reading the offset registers employs a dedicated read offset register pointer. The contents of the offset registers canbe read on the Qo-Qn pins when $\overline{L D}$ is set LOW and $\overline{R E N}$ is setLOW. If the FIFO is configured for an inputbus width and outputbus width both settox9, thenthe total number of read operations required to readtheoffset registers is 4 forthe IDT72V223/72V233/ 72V243/72V253/72V263/72V273/72V283 or6 for the IDT72V293. Referto Figure3, Programmable Flag Offset Programming Sequence, for a detailed diagram of the data input lines Do-Dnused during parallel programming. Ifthe FIFO is configured for an input to output bus width of $x 9$ to $x 18, x 18$ to $x 9$ or $x 18$ to $x 18$, then the following number of read operations are required: for an output bus width of $x 18$ a total of 2 read operations will be required to read the offsetregistersforthe IDT72V223/72V233/72V243/72V253/72V263/72V273/ $72 \mathrm{~V} 283 / 72 \mathrm{~V} 293$. For an outputbus width of $x 9$ a total of 4 read operations will be required to read the offset registers for the IDT72V223/72V233/72V243/ 72V253/72V263/72V273/72V283/72V293. Refer to Figure 3, Programmable Flag Offset Programming Sequence, for a detailed diagram. For example, reading $\overline{\mathrm{PAE}}$ and $\overline{\mathrm{PAF}}$ on the IDT72V293 configured for x18 bus width proceeds as follows: data are read via Qnfromthe Empty Offset Register on the first and second LOW-to-HIGH transition of RCLK. Uponthethird and fourth LOW-to-HIGH transition of RCLK, data are read from the Full Offset Register. The fifth and sixth transition of RCLK reads, once again, from the Empty Offset Register. Note that for a $\times 9$ bus width, one extra Read cycle is requiredforboththe Empty OffsetRegister and Full OffsetRegister. SeeFigure 17, Parallel Read of Programmable Flag Registers, for the timing diagram for this mode.

It is permissible to interrupt the offset register read sequence with reads or writes to the FIFO. The interruption is accomplished by deasserting $\overline{\mathrm{REN}}, \overline{\mathrm{LD}}$, or both together. When $\overline{R E N}$ and $\overline{\mathrm{LD}}$ are restored to a LOW level, reading of theoffsetregisters continues whereitleft off. It should be noted, and care should be taken from the fact that when a parallel read of the flag offsets is performed, the data word that was present on the output lines Qn will be overwritten.

Parallel reading of the offset registers is always permitted regardless of which timing mode (IDT Standard or FWFT modes) has been selected.

RETRANSMIT OPERATION

The Retransmit operation allows data that has already been read to be accessed again. There are 2 modes of Retransmit operation, normal latency and zerolatency. There are two stages to Retransmit: first, a setup procedure that resets the read pointer to the first location of memory, then the actual retransmit, which consists of reading out the memory contents, starting atthe beginning of memory.

Retransmitsetup is initiated by holding $\overline{R T}$ LOW during arising RCLKedge. $\overline{R E N}$ and $\overline{W E N}$ mustbe HIGH before bringing $\overline{R T}$ LOW. When zerolatency is utilized, $\overline{\mathrm{REN}}$ does not need to be HIGH before bringing $\overline{\mathrm{RT}}$ LOW. Atleasttwo words, but no more than D-2 words should have been written into the FIFO, and read from the FIFO, between Reset (Master or Partial) and the time of Retransmitsetup. If $x 18$ Inputorx18OutputbusWidth is selected, $D=512$ for the IDT72V223, 1,024 for the IDT72V233,2,048 for the IDT72V243,4,096 for the IDT72V253, 8,192 forthe IDT72V263, 16,384 for the IDT72V273, 32,768 fortheIDT72V283and65,536 forthe IDT72V293. Ifboth x9 Inputandx9 Output bus Widths are selected, $\mathrm{D}=1,024$ for the IDT72V223, 2,048 for the IDT72V233, 4,096 for the IDT72V243, 8,192 for the IDT72V253, 16,384 for the IDT72V263, 32,768 for the IDT72V273, 65,536 for the IDT72V283 and 131,072 forthe IDT72V293. InFWFTmode, ifx18 Inputorx18OutputbusWidth is selected, $D=513$ for the IDT72V223, 1,025 for the IDT72V233, 2,049 for the IDT72V243, 4,097 for the IDT72V253, 8,193 for the IDT72V263, 16,385 for the IDT72V273,32,769 forthe IDT72V283 and 65,537 forthe IDT72V293. If both $x 9$ Input and $x 9$ Output bus Widths are selected, $D=1,025$ for the IDT72V223, 2,049 forthe IDT72V233,4,097 fortheIDT72V243,8,193forthe

IDT72V253, 16,385 for the IDT72V263,32,769 forthe IDT72V273,65,537 for the IDT72V283 and 131,073 for the IDT72V293.

If IDT Standard mode is selected, the FIFO will mark the beginning of the Retransmit setup by setting $\overline{E F}$ LOW. The change inlevel will only be noticeable if $\overline{E F}$ was HIGH before setup. During this period, the internal read pointer is initialized to the first location of the RAM array.

When $\overline{\text { EF }}$ goes HIGH, Retransmit setup is complete and read operations may begin starting withthe firstlocation in memory. Since IDT Standard mode is selected, every word read including the firstwordfollowing Retransmitsetup requires a LOW on $\overline{R E N}$ to enable the rising edge of RCLK. See Figure 11, Retransmit Timing (IDT Standard Mode), for the relevant timing diagram.

IfFWFT mode is selected, the FIFO will markthe beginning ofthe Retransmit setup by setting $\overline{\mathrm{OR}} \mathrm{HIGH}$. During this period, the internal read pointer is set to the first location of the RAM array.

When $\overline{\text { OR }}$ goes LOW, Retransmit setup is complete; at the sametime, the contents ofthefirstlocationappearontheoutputs. SinceFWFTmodeisselected, the first word appears on the outputs, no LOW on $\overline{R E N}$ is necessary. Reading all subsequent words requires a LOW on $\overline{R E N}$ to enable the rising edge of RCLK. See Figure 12, Retransmit Timing (FWFTMode), for the relevanttiming diagram.

Foreither IDTStandardmode orFWFT mode, updating of the $\overline{P A E}, \overline{\mathrm{AF}}$ and $\overline{\mathrm{PAF}}$ flags begin with the rising edge of RCLK that the $\overline{\mathrm{RT}}$ is setup on. $\overline{\mathrm{PAE}}$ is synchronizedto RCLK, thus onthe second rising edge of RCLKafter $\overline{\operatorname{RT}}$ is setup, the $\overline{\text { PAE }}$ flag will be updated. $\overline{\mathrm{HF}}$ is asynchronous, thus the rising edge of RCLK that $\overline{\mathrm{RT}}$ is setup will update $\overline{\mathrm{HF}} . \overline{\mathrm{PAF}}$ is synchronized to WCLK, thus the second rising edge of WCLK that occurs tSKEW after the rising edge of RCLK that $\overline{R T}$ is setup will update $\overline{\mathrm{PAF}} . \overline{\mathrm{RT}}$ is synchronized to RCLK.

TheRetransmitfunctionhastheoption of2modes ofoperation, either"normal latency" or "zero latency". Figure 11 and Figure 12 mentioned previously, relate to "normal latency". Figure 13 and Figure 14 show "zero latency" retransmitoperation. Zerolatency basically means that the first data word to be retransmitted, is placed onto the output register with respect to the RCLK pulse that initiated the retransmit.

SIGNAL DESCRIPTION

INPUTS:

DATA IN (Do - Dn)
Data inputs for 18-bit wide data(Do-D17) or data inputs for 9-bit wide data (D0-D8).

CONTROLS:

MASTER RESET ($\overline{\text { MRS }}$)

AMasterResetis accomplishedwheneverthe $\overline{\mathrm{MRS}}$ inputistakentoaLOW state. This operation sets the internal read and write pointers to the firstlocation of the RAM array. $\overline{\mathrm{PAE}}$ will go LOW, $\overline{\mathrm{PAF}}$ will go HIGH, and $\overline{\mathrm{HF}}$ will go HIGH.

IfFWFT/SI is LOW during Master Resetthenthe IDT Standardmode, along with $\overline{\mathrm{EF}}$ and $\overline{\mathrm{FF}}$ are selected. $\overline{\mathrm{EF}}$ will go LOW and $\overline{\mathrm{FF}}$ will go HIGH. If FWFT/ Sl is HIGH, then the FirstWord Fall Through mode(FWFT), along with $\overline{\mathrm{R}}$ and $\overline{\mathrm{OR}}$, are selected. $\overline{\mathrm{OR}}$ will go HIGH and $\overline{\mathrm{R}}$ will go LOW.

All control settings such as OW, IW, $\overline{\mathrm{BE}}, \mathrm{RM}, \mathrm{PFM}$ and IP are defined during the Master Resetcycle.

DuringaMasterReset, theoutputregister is initializedtoallzeroes. AMaster Reset is required after power up, before a write operation cantake place. $\overline{\mathrm{MRS}}$ is asynchronous.

See Figure 5, Master Reset Timing, for the relevant timing diagram.

PARTIAL RESET ($\overline{\operatorname{PRS}})$

APartial Reset is accomplished whenever the $\overline{\mathrm{PRS}}$ inputistakento aLOW state. As in the case of the Master Reset, the internal read and write pointers are settothefirstlocation of the RAM array, $\overline{\text { PAE }}$ goes LOW, $\overline{\text { PAF }}$ goes HIGH , and $\overline{\mathrm{HF}}$ goes HIGH.

Whichever mode is active at the time of Partial Reset, IDT Standard mode or FirstWord Fall Through, that mode will remain selected. Ifthe IDT Standard mode is active, then $\overline{F F}$ will go HIGH and $\overline{E F}$ will go LOW. Ifthe FirstWord Fall Through mode is active, then $\overline{\mathrm{OR}}$ will go HIGH, and $\overline{\mathrm{R}}$ will go LOW.

Following Partial Reset, all values held in the offset registers remain unchanged. The programming method (parallel or serial) currently active at the time of Partial Reset is also retained. The output register is initialized to all zeroes. $\overline{\mathrm{PRS}}$ is asynchronous.

A Partial Reset is useful for resetting the device during the course of operation, when reprogramming programmableflag offsetsettings may notbe convenient.

See Figure 6, Partial Reset Timing, for the relevant timing diagram.

ASYNCHRONOUS WRITE ($\overline{\text { ASYW }}$)

The write portcan be configured for eitherSynchronous or Asynchronous mode of operation. If during Master Reset the $\overline{\text { ASYW }}$ input is LOW, then Asynchronous operation of the write port will be selected. During Asynchronous operation of the write port the WCLKinputbecomes WR input, this is the Asynchronous write strobe input. A rising edge on WR will write data present on the Dn inputs into the FIFO. ($\overline{\mathrm{WEN}}$ must be tied LOW when using the write port in Asynchronous mode).

Whenthe write port is configured for Asynchronous operation the full flag ($\overline{\mathrm{FF}}$) operates in an asynchronous manner, that is, the full flag will be updated based in both a write operation and read operation. Note, if Asynchronous mode is selected, FWFT is not permissable. Refer to Figures 23, 24, 27 and 28 for relevanttiming and operational waveforms.

ASYNCHRONOUS READ ($\overline{\text { ASYR }}$)

The read portcan be configured for eitherSynchronous or Asynchronous mode of operation. If during a Master Reset the $\overline{A S Y R}$ input is LOW, then

Asynchronous operation ofthe read portwill be selected. During Asynchronous operation of the read port the RCLK input becomes RD input, this is the Asynchronous read strobe input. A rising edge on RD will read data from the FIFO via the output register and Qn port. ($\overline{R E N}$ must be tied LOW during Asynchronous operation of the read port).

The $\overline{\mathrm{OE}}$ input provides three-state control of the Qn output bus, in an asynchronous manner.

When the read port is configured for Asynchronous operation the device mustbe operating on IDT standard mode, FWFT mode is not permissible ifthe read port is Asynchronous. The Empty Flag($\overline{\mathrm{EF}}$) operates in an Asynchronous manner, that is, the empty flag will be updated based on both a read operation and a write operation. Refertofigures $25,26,27$ and 28 for relevanttiming and operational waveforms.

RETRANSMIT ($\overline{\mathrm{RT}}$)

The Retransmit operation allows data that has already been read to be accessed again. There are 2 modes of Retransmit operation, normal latency and zero latency. There are two stagesto Retransmit: first, a setup procedure that resets the read pointer to the first location of memory, then the actual retransmit, which consists of reading out the memory contents, starting at the beginning of the memory.

Retransmit setup is initiated by holding $\overline{\mathrm{RT}} \mathrm{LOW}$ during a rising RCLKedge. $\overline{\mathrm{REN}}$ and $\overline{\mathrm{WEN}}$ must be HIGH before bringing RT LOW. When zero latency is utilized, $\overline{\mathrm{REN}}$ does not need to be HIGH before bringing $\overline{\mathrm{RT}}$ LOW.

If IDT Standard mode is selected, the FIFO will mark the beginning of the Retransmitsetup by setting $\overline{E F}$ LOW. The change inlevel will only be noticeable if $\overline{\mathrm{EF}}$ was HIGH before setup. During this period, the internal read pointer is initialized to the first location of the RAM array.

When $\overline{\mathrm{EF}}$ goes HIGH, Retransmit setup is complete and read operations may begin starting with the firstlocation in memory. Since IDT Standard mode is selected, every word read including the first word following Retransmit setup requires a LOW on REN to enable the rising edge of RCLK. See Figure 11, Retransmit Timing (IDT Standard Mode), for the relevant timing diagram.

IfFWFT mode is selected, the FIFO will markthebeginning ofthe Retransmit setup by setting $\overline{O R} H I G H$. During this period, the internal read pointer is set to the first location of the RAM array.

When $\overline{\text { ORgoes LOW, Retransmit setup is complete; atthe same time, the }}$ contents of thefirstlocationappearontheoutputs. SinceFWFTmodeisselected, the firstword appears on the outputs, no LOW on REN is necessary. Reading all subsequent words requires a LOW on REN to enable the rising edge of RCLK. See Figure 12, Retransmit Timing(FWFTMode), for the relevanttiming diagram.

In Retransmit operation, zero-latency mode can be selected using the RetransmitMode(RM) pin during a Master Reset. This can be applied to both IDT Standard mode and FWFT mode.

RETRANSMIT LATENCY MODE (RM)

Azero-latency retransmittiming mode canbe selected using the Retransmit timing Mode pin (RM). During Master Reset, a LOW on RM will select zerolatency retransmit. A HIGH on RM during Master Reset will select normal latency.

If zero-latency retransmit operation is selected the first data word to be retransmitted will be placed ontheoutput register with respecttothe sameRCLK edge that initiated the retransmit based on RT being LOW.

Refer to Figure 13 for Retransmit Timing with zero latency (IDT Standard Mode). Refer to Figure 14 for Retransmit Timing with zero latency (FWFT Mode).

FIRST WORD FALL THROUGH/SERIAL IN (FWFT/SI)

This is a dual purpose pin. During Master Reset, the state of the FWFT/ Sl input determines whether the device will operate in IDT Standard mode or First Word Fall Through (FWFT) mode.

If, at the time of Master Reset, FWFT/SI is LOW, then IDT Standard mode will be selected. This mode uses the Empty Flag ($\overline{\mathrm{EF}}$) to indicate whetherornot there are any words present in the FIFO memory. It also uses the Full Flag function $(\overline{\mathrm{FF}})$ to indicate whether or not the FIFO memory has any free space for writing. In IDT Standard mode, every word read from the FIFO, including the first, must be requested using the Read Enable ($\overline{\mathrm{REN}})$ and RCLK.

If, at the time of Master Reset, FWFT/SI is HIGH, then FWFT mode will be selected. This mode uses Output Ready ($\overline{\mathrm{OR}})$ to indicate whether or not there is valid data at the data outputs (Qn_{n}. It also uses Input Ready ($\left.\overline{\mathrm{R}}\right)$ to indicate whether or not the FIFO memory has any free space for writing. In the FWFT mode, the firstword writtentoanempty FIFO goesdirectlyto QnafterthreeRCLK rising edges, $\overline{\text { REN }}=$ LOW is not necessary. Subsequent words must be accessed using the Read Enable ($\overline{\mathrm{REN}}$) and RCLK.

After Master Reset, FWFT/Slacts as a serial inputforloading $\overline{\mathrm{PAE}}$ and $\overline{\mathrm{PAF}}$ offsets into the programmable registers. The serial inputfunction can only be used when the serial loading method has been selected during Master Reset. Serial programming using the FWFT/SI pinfunctionsthe same way in bothIDT Standard and FWFT modes.

WRITE STROBE \& WRITE CLOCK (WR/WCLK)

If Synchronous operation of the write porthas been selected via $\overline{A S Y W}$, this input behaves as WCLK.

A write cycle is initiated on the rising edge of the WCLK input. Data setup and hold times must be met with respectothe LOW-to-HIGH transition of the WCLK. Itis permissible tostoptheWCLK. NotethatwhileWCLKis idle, the $\overline{F F} /$ $\overline{\mathrm{R}}, \overline{\mathrm{PAF}}$ and $\overline{\mathrm{HF}}$ flags will not be updated. (Note thatWCLK is only capable of updating $\overline{\mathrm{HF}}$ flag to LOW). The Write and Read Clocks can either be independentorcoincident.

IfAsynchronous operation has been selected this inputisWR (write strobe). Datais Asynchronously written into the FIFO viathe Dninputs wheneverthere is a rising edge on WR. In this mode the WEN input must be tied LOW.

WRITE ENABLE ($\overline{\text { WEN }}$)

Whenthe $\overline{W E N}$ inputis LOW, data may be loaded into the FIFORAM array on the rising edge of every WCLK cycle if the device is not full. Data is stored in the RAM array sequentially and independently of any ongoing read operation.

When $\overline{W E N}$ is $H I G H$, no new datais written inthe RAM array on eachWCLK cycle.

To prevent data overflow in the IDT Standard mode, $\overline{\mathrm{FF}}$ will go LOW, inhibiting further write operations. Uponthe completion of a valid read cycle, $\overline{\mathrm{FF}}$ will go HIGH allowing a write to occur. The $\overline{F F}$ is updated by two WCLK cycles + tskEW after the RCLK cycle.

To prevent data overflow in the FWFT mode, $\overline{\mathbb{R}}$ will go HIGH, inhibiting further write operations. Upon the completion of a valid read cycle, $\overline{\mathrm{IR}}$ will go LOW allowing a write to occur. The $\overline{\mathrm{R}}$ flag is updated by two WCLK cycles + tsKEW after the valid RCLK cycle.
$\overline{\text { WEN }}$ is ignored when the FIFO is full in eitherFWFT or IDTStandardmode.
If Asynchronous operation of the Read porthas been selected, then WEN mustbeheldactive, (tied LOW).

READ STROBE \& READ CLOCK (RD/RCLK)

If Synchronous operation of the read porthas been selected via $\overline{A S Y R}$, this inputbehaves as RCLK. A read cycle is initiated on the rising edge of the RCLK input. Data can be read on the outputs, on the rising edge of the RCLK input.

Itis permissible to stop the RCLK. Note that while RCLKisidle, the $\overline{\mathrm{EF}} / \overline{\mathrm{OR}}, \overline{\mathrm{PAE}}$ and $\overline{\mathrm{HF}}$ flags will not be updated. (Note that RCLK is only capable of updating the $\overline{\mathrm{HF}}$ flag to HIGH). The Write and Read Clocks can be independent or coincident.

If Asynchronous operation has been selected this input is RD (Read Strobe). Data is Asynchronously read from the FIFO via the output register whenever there is a rising edge on RD. In this mode the $\overline{R E N}$ input must be tied LOW. The $\overline{\mathrm{OE}}$ input is used to provide Asynchronous control of the threestateQnoutputs.

READ ENABLE ($\overline{\operatorname{REN}})$

WhenRead Enable is LOW, datais loadedfromthe RAM array intotheoutput register on the rising edge of every RCLK cycle if the device is not empty.

When the $\overline{R E N}$ input is HIGH, the output register holds the previous data and no new data is loaded into the output register. The data outputs $Q_{0}-Q_{n}$ maintain the previous data value.

In the IDT Standard mode, every word accessed at Q_{n}, including the first word written to an empty FIFO, must be requested using $\overline{\operatorname{REN}}$. When the last word has been read from the FIFO, the Empty Flag ($\overline{\mathrm{EF}})$ will go LOW, inhibiting further read operations. $\overline{\mathrm{REN}}$ is ignored when the FIFO is empty. Once a write is performed, $\overline{\mathrm{EF}}$ will go HIGH allowing a read to occur. The $\overline{\mathrm{EF}}$ flag is updated by two RCLK cycles + tskEw after the valid WCLK cycle.

IntheFWFTmode, thefirstword writtentoanempty FIFO automatically goes to the outputs Qn, on the third valid LOW to HIGH transition of RCLK + tSKEW after the first write. $\overline{\mathrm{REN}}$ does not need to be asserted LOW. In order to access all otherwords, a read mustbeexecuted using $\overline{R E N}$. The RCLKLOW to HIGH transition after the lastword has been readfrom the FIFO, Output Ready ($\overline{\mathrm{OR}}$) will go HIGH with a true read (RCLK with $\overline{R E N}=L O W$), inhibiting further read operations. $\overline{\mathrm{REN}}$ is ignored when the FIFO is empty.

IfAsynchronous operation of the Read port has been selected, then $\overline{R E N}$ mustbeheld active, (tied LOW).

SERIAL ENABLE ($\overline{\mathrm{SEN}}$)

The $\overline{\text { SEN }}$ input is an enable used only for serial programming of the offset registers. The serial programming method must be selected during Master Reset. $\overline{\text { SEN }}$ is always used in conjunction with $\overline{\mathrm{LD}}$. When these lines are both LOW, dataattheSl input canbeloadedintothe program registeronebitforeach LOW-to-HIGHtransition of WCLK.

When $\overline{\text { SEN }}$ is HIGH, the programmable registers retains the previous settings and no offsets are loaded. $\overline{\text { SEN }}$ functions the same way in both IDT Standard and FWFT modes.

OUTPUTENABLE ($\overline{O E}$)

When Output Enable is enabled(LOW), the parallel outputbuffers receive datafrom the output register. When $\overline{\text { OE }}$ is HIGH, the output data bus $\left(\mathrm{Q}_{n}\right)$ goes intoahighimpedance state.

LOAD ($\overline{\mathrm{LD}})$

This is a dual purpose pin. During Master Reset, the state of the $\overline{\mathrm{LD}}$ input, along with FSELO and FSEL1, determines one of eight default offset values for the $\overline{\mathrm{PAE}}$ and $\overline{\mathrm{PAF}}$ flags, along with the method by which these offset registers can be programmed, parallel or serial (see Table 2). After Master Reset, $\overline{\mathrm{LD}}$ enables write operationsto and read operations from the offset registers. Only the offsetloading method currently selected canbe usedto write to the registers. Offset registers can be read only in parallel.

After Master Reset, the $\overline{L D}$ pin is used to activate the programming process of the flag offsetvalues $\overline{\mathrm{PAE}}$ and $\overline{\mathrm{PAF}}$. Pulling $\overline{\mathrm{LD}} \mathrm{LOW}$ will begin a serial loading or parallel load or read of these offset values.

BUS-MATCHING (IW, OW)

The pins IW and OW are used to define the input and output bus widths. During Master Reset, the state of these pins is used to configure the device bus sizes. See Table 1 for control settings. All flags will operate based on the word/ byte size boundary as defined by the selection of the widestinputor outputbus width.

BIG-ENDIAN/LITTLE-ENDIAN ($\overline{\mathrm{BE}}$)

DuringMaster Reset, aLOW on $\overline{B E}$ will selectBig-Endian operation. AHIGH on $\overline{\mathrm{BE}}$ during MasterResetwill selectLittle-Endianformat. This function is useful when data is written intothe FIFO in word format (x 18) and read out of the FIFO in word format (x18) or byte format (x9). If Big-Endian mode is selected, then the mostsignificant byte of the word written into the FIFO will be read out of the FIFOfirst,followed by theleastsignificantbyte. IfLittle-Endianformatisselected, then the least significant byte of the word written into the FIFO will be read out first, followed by the mostsignificantbyte. The mode desired is configuredduring master reset by the state of the Big-Endian $(\overline{\mathrm{BE}})$ pin. Refer to Figure 4, BusMatching Byte Arrangement, for a diagram showing the byte arrangement.

PROGRAMMABLEFLAG MODE(PFM)

During Master Reset During Master Reset, a LOW on PFM will select Asynchronous Programmable flag timing mode. A HIGH on PFM will select Synchronous Programmable flag timing mode. If asynchronous $\overline{\mathrm{PAF}} / \overline{\mathrm{PAE}}$ configuration is selected (PFM, LOW during $\overline{\mathrm{MRS}}$), the $\overline{\mathrm{PAE}}$ is asserted LOW on the LOW-to-HIGHtransition of RCLK. $\overline{\text { PAE is resetto HIGH ontheLOW-to- }}$ HIGH transition of WCLK. Similarly, the $\overline{\text { PAF }}$ is asserted LOW on the LOW-toHIGH transition of WCLK and $\overline{\text { PAF }}$ is reset to HIGH on the LOW-to-HIGH transition of RCLK.

If synchronous $\overline{\mathrm{PAE}} / \overline{\mathrm{PAF}}$ configuration is selected (PFM, HIGH during MRS), the $\overline{\text { PAE }}$ is asserted and updated on the rising edge of RCLK only and notWCLK. Similarly, $\overline{\text { PAF }}$ is asserted and updated on the rising edge of WCLK only and not RCLK. The mode desired is configured during master resetby the state of the Programmable Flag Mode (PFM) pin.

INTERSPERSED PARITY (IP)

DuringMasterReset, aLOW on IP will selectNon-Interspersed Parity mode. AHIGH will select Interspersed Parity mode. The IP bitfunction allows the user to select the parity bit in the word loaded into the parallel port (D0-Dn) when programming the flag offsets. If Interspersed Parity mode is selected, then the FIFO will assumethat the parity bitis located in bitposition D8 and D17 during the parallel programming of the flag offsets, and will therefore ignore D8 when loading the offset register in parallel mode. This is also applied to the output register when reading the value of the offset register. If Interspersed Parity is selected then output Q8 will be invalid. If Non-Interspersed Parity mode is selected, then D16 and D17 are the parity bits and are ignored during parallel programming ofthe offsets. (D8becomes a valid bit). Additionally, output Q8 will become a valid bit when performing a read of the offset register. IP mode is selectedduring Master Resetby the state of the IP inputpin. Interspersed Parity control only has an effect during parallel programming of the offset registers. It does not effect the data written to and read from the FIFO.

OUTPUTS:

FULL FLAG ($\overline{F F} / / \bar{R})$

This is a dual purpose pin. InIDTStandardmode, the Full Flag($\overline{\text { FF }}$) function is selected. When the FIFO is full, $\overline{\mathrm{FF}}$ will go LOW, inhibiting further write operations. When $\overline{F F}$ is HIGH, the FIFO is not full. If no reads are performed after a reset (either $\overline{M R S}$ or $\overline{\text { PRS }}$), $\overline{\mathrm{FF}}$ will go LOW after D writes to the FIFO. If $x 18$ Input or $x 18$ Output bus Width is selected, $D=512$ for the IDT72V223,

1,024 for the IDT72V233,2,048 for the IDT72V243,4,096 for the IDT72V253, 8,192 forthe IDT72V263, 16,384 forthe IDT72V273,32,768forthe IDT72V283 and 65,536 for the IDT72V293. If both x 9 Input and x 9 Output bus Widths are selected, $D=1,024$ for the IDT72V223,2,048forthe IDT72V233,4,096 forthe IDT72V243, 8,192 forthe IDT72V253, 16,384 for the IDT72V263,32,768 for the IDT72V273, 65,536 for the IDT72V283 and 131,072 for the IDT72V293. See Figure 7, Write Cycle and Full Flag Timing (IDT Standard Mode), for the relevanttiming information.

In FWFT mode, the Input Ready ($\overline{\mathrm{IR}}$) function is selected. $\overline{\mathrm{IR}}$ goes LOW when memory space is available for writing in data. When there is no longer any free space left, $\overline{\mathbb{R}}$ goes HIGH, inhibiting further write operations. If no reads are performed after a reset (either $\overline{\mathrm{MRS}}$ or $\overline{\mathrm{PRS}}$), $\overline{\mathrm{R}}$ will goHIGH afterD writes to the FIFO. If $x 18$ Input or $x 18$ Output bus Width is selected, $D=513$ for the IDT72V223, 1,025 forthe IDT72V233,2,049 forthe IDT72V243, 4,097 forthe IDT72V253, 8,193 forthe IDT72V263, 16,385 for the IDT72V273,32,769 for the IDT72V283 and 65,537 for the IDT72V293. If both x9 Input and x9 Output bus Widths are selected, $\mathrm{D}=1,025$ for the IDT72V223, 2,049 for the IDT72V233, 4,097 for the IDT72V243, 8,193 for the IDT72V253, 16,385 for the IDT72V263, 32,769 for the IDT72V273, 65,537 for the IDT72V283 and 131,073 for the IDT72V293. See Figure 9, Write Timing (FWFT Mode), for the relevanttiming information.

The $\overline{\mathrm{IR}}$ status not only measures the contents of theFIFO memory, butalso counts the presence of a word inthe output register. Thus, in FWFT mode, the total number of writes necessary to deassert $\overline{\mathbb{R}}$ is one greater than needed to assert $\overline{F F}$ in IDT Standard mode.
$\overline{\mathrm{FF}} / \overline{\mathrm{R}}$ is synchronous and updated on the rising edge ofWCLK. $\overline{\mathrm{FF}} / \overline{\mathrm{R}}$ are double register-buffered outputs.

EMPTY FLAG ($\overline{E F} / \overline{O R}$)

This is a dual purpose pin. In the IDT Standard mode, the Empty Flag ($\overline{\mathrm{EF}})$ function is selected. When the FIFO is empty, $\overline{\mathrm{EF}}$ will goLOW, inhibiting further read operations. When $\overline{\text { EF }}$ is HIGH, the FIFO is notempty. See Figure 8, Read Cycle, Empty Flag and First Word Latency Timing (IDT Standard Mode), for the relevanttiming information.

InFWFT mode, the Output Ready ($\overline{\mathrm{OR}) \text { function is selected. } \overline{\mathrm{OR}} \text { goes LOW }}$ at the same time that the first word written to an empty FIFO appears valid on theoutputs. $\overline{O R}$ stays LOW aftertheRCLKLOWtoHIGHtransitionthatshiftsthe lastword from the FIFO memory to the outputs. $\overline{\text { OR }}$ goes HIGH only with a true read(RCLKwith $\overline{R E N}=L O W)$. The previous datastays attheoutputs, indicating the last word was read. Further data reads are inhibited until $\overline{\mathrm{OR}}$ goes LOW again. See Figure 10, Read Timing (FWFT Mode), for the relevant timing information.
$\overline{\mathrm{EF}} / \overline{\mathrm{OR}}$ is synchronous and updated on the rising edge of RCLK.
In IDT Standard mode, $\overline{\mathrm{EF}}$ is a double register-buffered output. In FWFT mode, $\overline{\mathrm{OR}}$ is a triple register-buffered output.

PROGRAMMABLE ALMOST-FULL FLAG ($\overline{\text { PAF }})$

The Programmable Almost-Full flag ($\overline{\mathrm{PAF}}$) will go LOW when the FIFO reaches the almost-full condition. In IDT Standard mode, if no reads are performed after reset ($\overline{\mathrm{MRS}}), \overline{\mathrm{PAF}}$ will go LOW after (D-m) words are written tothe FIFO. Ifx18 Inputorx18Outputbus Width is selected, $($ D-m $)=(512-\mathrm{m})$ writes for the IDT72V223, (1,024-m) writes for the IDT72V233, (2,048-m) writes for the IDT72V243, (4,096-m) writes for the IDT72V253, (8,192-m) writes for the IDT72V263, ($16,384-\mathrm{m}$) writes for the IDT72V273, (32,768-m) writes for the IDT72V283 and ($65,536-\mathrm{m}$) writes for the IDT72V293. Ifboth x 9 Inputand x9 Outputbus Widths are selected, (D-m) $=(1,024-m)$ writes for the IDT72V223, (2,048-m) writes for the IDT72V233, (4,096-m) writes for the IDT72V243, (8,192-m) writes for the IDT72V253, (16,384-m) writes for the

IDT72V263, (32,768-m) writes for the IDT72V273, (65,536-m) writes for the IDT72V283 and ($131,072-m$) writes for the IDT72V293. The offset " m " is the full offset value. The default setting for this value is stated in Table 2.

In FWFT mode, if $x 18$ Input or $x 18$ Output bus Width is selected, the $\overline{\text { PAF }}$ will go LOW after ($513-\mathrm{m}$) writes for the IDT72V223, ($1,025-\mathrm{m}$) writes for the IDT72V233, $(2,049-\mathrm{m})$ writes for the IDT72V243, $(4,097-\mathrm{m})$ writes for the IDT72V253, (8,193-m) writes for the IDT72V263, (16,385-m) writes for the IDT72V273, (32,769-m) writes for the IDT72V283 and ($65,537-\mathrm{m}$) writes for the IDT72V293. Ifboth $x 9$ Inputand $x 9$ OutputbusWidths are selected, the $\overline{P A F}$ will go LOW after ($1,025-\mathrm{m}$) writes forthe IDT72V223, (2,049-m) writes for the IDT72V233, (4,097-m) writes for the IDT72V243, (8,193-m) writes for the IDT72V253, ($16,385-\mathrm{m}$) writes for the IDT72V263, (32,769-m) writes for the IDT72V273, ($65,537-\mathrm{m}$) writes for the IDT72V283 and (131,073-m) writes for the IDT72V293. The offsetm is the full offset value. The default setting for this value is stated in Table 2.

See Figure 18, Synchronous Programmable Almost-Full Flag Timing (IDT Standard and FWFTMode), for the relevanttiming information.

If asynchronous $\overline{\mathrm{PAF}}$ configuration is selected, the $\overline{\mathrm{PAF}}$ is asserted LOW onthe LOW-to-HIGHtransition oftheWriteClock (WCLK). $\overline{\text { PAF is resetto HIGH }}$ on the LOW-to-HIGH transition of the Read Clock (RCLK). If synchronous $\overline{\text { PAF }}$ configuration is selected, the $\overline{\mathrm{PAF}}$ is updated on the rising edge of WCLK. See Figure 20 for Asynchronous Programmable Almost-Full Flag Timing (IDT Standard and FWFT Mode).

PROGRAMMABLE ALMOST-EMPTY FLAG ($\overline{\mathrm{PAE}})$

The Programmable Almost-Empty flag ($\overline{\mathrm{PAE}})$ will go LOW when the FIFO reaches the almost-empty condition. InIDTStandard mode, PAE will go LOW when there are n words or less in the FIFO. The offset " n " is the empty offset value. The default setting for this value is stated in Table 2.

In FWFT mode, the $\overline{\text { PAE }}$ will go LOW when there are $n+1$ words or less in the FIFO. The default setting for this value is stated in Table 2.

See Figure 19, Synchronous Programmable Almost-Empty Flag Timing (IDT Standard and FWFT Mode), for the relevant timing information.

If asynchronous $\overline{\mathrm{PAE}}$ configuration is selected, the $\overline{\mathrm{PAE}}$ is asserted LOW on the LOW-to-HIGHtransition of the ReadClock (RCLK). $\overline{\text { PAE is resettoHIGH }}$ ontheLOW-to-HIGHtransition of theWriteClock (WCLK). Ifsynchronous $\overline{\mathrm{PAE}}$
configuration is selected, the $\overline{\mathrm{PAE}}$ is updated on the rising edge of RCLK. See Figure 21, Asynchronous Programmable Almost-Empty Flag Timing (IDT Standard and FWFTMode), for the relevant timing information.

HALF-FULL FLAG ($\overline{\mathrm{HF}}$)

This outputindicates ahalf-full FIFO. The risingWCLKedgethatfillstheFIFO beyondhalf-full sets $\overline{\mathrm{FF}}$ LOW. Theflagremains LOW until thedifferencebetween the write and read pointers becomes less than or equal to half of the total depth of the device; the rising RCLK edge that accomplishes this condition sets $\overline{\mathrm{HF}}$ HIGH.

InIDTStandard mode, ifno reads are performed after reset $(\overline{\mathrm{MRS}}$ or $\overline{\mathrm{PRS}})$, $\overline{\mathrm{HF}}$ will go LOW after (D/2 +1) writes to the FIFO. If x 18 Input or x 18 Output bus Width is selected, $D=512$ for the IDT72V223, 1,024 for the IDT72V233, 2,048 fortheIDT72V243,4,096 forthe IDT72V253, 8, 192 for the IDT72V263, 16,384 for the IDT72V273, 32,768 for the IDT72V283 and 65,536 for the IDT72V293. Ifboth x9 Input and x9 OutputbusWidths are selected, $D=1,024$ forthe IDT72V223, 2,048forthe IDT72V233,4,096 forthe IDT72V243,8,192 for the IDT72V253, 16,384 for the IDT72V263, 32,768 for the IDT72V273, 65,536 for the IDT72V283 and 131,072 for the IDT72V293.

In FWFT mode, if no reads are performed after reset ($\overline{\mathrm{MRS}}$ or $\overline{\mathrm{PRS}}), \overline{\mathrm{HF}}$ will go LOW after ($D-1 / 2+2$) writes to the FIFO. If x18 Inputorx18Outputbus Width is selected, $\mathrm{D}=513$ forthe IDT72V223, 1,025 forthe IDT72V233, 2,049 forthe IDT72V243,4,097 forthe IDT72V253,8,193 forthe IDT72V263, 16,385 for the IDT72V273, 32,769 for the IDT72V283 and 65,537 forthe IDT72V293. If both $x 9$ Input and $x 9$ Output bus Widths are selected, $D=1,025$ for the IDT72V223,2,049 forthe IDT72V233, 4,097 forthe IDT72V243, 8,193forthe IDT72V253, 16,385 for the IDT72V263,32,769 forthe IDT72V273,65,537 for the IDT72V283 and 131,073 for the IDT72V293.

See Figure 22, Half-Full Flag Timing (IDT Standard and FWFT Mode), for the relevanttiming information. Because $\overline{\mathrm{HF}}$ is updated by both RCLK and WCLK, it is considered asynchronous.

DATA OUTPUTS(Qo-Qn)

(Q0-Q17) data outputs for 18-bit wide data or (Q0-Q8) data outputs for9bitwide data.

BYTE ORDER ON OUTPUT PORT:

$\overline{B E}$	IW	OW
\mathbf{L}	\mathbf{L}	L

$\overline{B E}$	IW	OW
\mathbf{H}	L	L

D17-D9

D8-D0
\square Write to FIFO

(a) x18 INPUT to $\times 18$ OUTPUT - BIG ENDIAN

(b) x18 INPUT to x18 OUTPUT - LITTLE ENDIAN

$\overline{B E}$	IW	OW
L	L	H

$\overline{B E}$	IW	OW
H	L	H

BYTE ORDER ON INPUT PORT:

BYTE ORDER ON OUTPUT PORT:

$\overline{B E}$	IW	OW
L	H	L

(a) $x 9$ INPUT to $x 18$ OUTPUT - BIG ENDIAN

$\overline{\mathrm{BE}}$	IW	OW
\mathbf{H}	H	L

(a) x9 INPUT to $\times 18$ OUTPUT - LITTLE ENDIAN

Figure 5. Master Reset Timing

Figure 6. Partial Reset Timing

NOTES:

1. tskEw is the minimum time between a rising RCLK edge and a rising WCLK edge to guarantee that $\overline{F F}$ will go high (after one WCLK cycle pus twFF). If the time between the rising edge of the RCLK and the rising edge of the WCLK is less than tskew, then the FF deassertion may be delayed one extra WCLK cycle.
2. $\overline{\mathrm{LD}}=\mathrm{HIGH}, \overline{\mathrm{EF}}=\mathrm{HIGH}$

Figure 7. Write Cycle and Full Flag Timing (IDT Standard Mode)

notes:

1. tSKEW1 is the minimum time between a rising WCLK edge and a rising RCLK edge to guarantee that $\overline{E F}$ will go HIGH (after one RCLK cycle plus tref). If the time between the rising edge of WCLK and the rising edge of RCLK is less than tsKEW1, then $\overline{E F}$ deassertion may be delayed one extra RCLK cycle.
2. $\mathrm{LD}=\mathrm{HIGH}$.
3. First data word latency: tskew $1+1$ *TRCLK + tref.

Figure 8. Read Cycle, Empty Flag and First Data Word Latency Timing (IDT Standard Mode)

NOTES:
 tSKEW1, then $\overline{\mathrm{OR}}$ assertion may be delayed one extra RCLK cycle.
 tSKEW2, then the $\overline{\mathrm{P}} \overline{\mathrm{AE}}$ deassertion may be delayed one extra RCLK cycle.
$\overline{\mathrm{D}}=\mathrm{HIGH}, \overline{\mathrm{OE}}=1 \mathrm{OW}$
3. $\overline{L D}=\mathrm{HIGH}, \mathrm{OE}=\mathrm{LOW}$
4. $n=\overline{\mathrm{PAE}}$ offset, $m=\overline{\mathrm{PAF}}$ offset and $\mathrm{D}=$ maximum FIFO depth.

and 65,537 for the IDT72V293.
 for the IDT72V283 and 131,073 for the IDT72V293.
6. First data word latency: tsKEW1 $+2^{\star}$ TRCLK + tref.

 than tSKEW1, then the $\overline{\mathbb{R}}$ assertion may be delayed one extra WCLK cycle. 2. tSKEW2 is the minimum time between a rising RCLK edge and a rising WCLK edge to
3. $\overline{\mathrm{LD}}=\overline{\mathrm{HIGH}}$.ffet $m=\overline{\mathrm{PAF}}$ offset and $\mathrm{D}=$ maxim FIFO depth
n $=\overline{\mathrm{PAE}}$ Off
 and 65,537 for the IDT72V293.
for the IDT72V283 and 131,073 for the IDT72V293.

Figure 10. Read Timing (First Word Fall Through Mode)

NOTES:

1. Retransmit setup is complete after $\overline{E F}$ returns HIGH, only then can a read operation begin.
2. $\overline{\mathrm{OE}}=\mathrm{LOW}$.
3. $\mathrm{W}_{1}=$ first word written to the FIFO after Master Reset, $\mathrm{W}_{2}=$ second word written to the FIFO after Master Reset.
4. No more than D-2 may be written to the FIFO between Reset (Master or Partial) and Retransmit setup. Therefore, FF will be HIGH throughout the Retransmit setup procedure.

If $x 18$ Input or $x 18$ Output bus Width is selected, $D=512$ for the IDT72V223, 1,024 for the IDT72V233, 2,048 for the IDT72V243, 4,096 for the IDT72V253, 8, 192 for the IDT72V263, 16,384 for the IDT72V273, 32,768 for the IDT72V283 and 65,536 for the IDT72V293.
If both x 9 Input and x 9 Output bus Widths are selected, $\mathrm{D}=1,024$ for the IDT72V223, 2,048 for the IDT72V233, 4,096 for the IDT72V243, 8,192 for the IDT72V253, 16,384 for the IDT72V263, 32,768 for the IDT72V273, 65,536 for the IDT72V283 and 131,072 for the IDT72V293.
5. There must be at least two words written to and two words read from the FIFO before a Retransmit operation can be invoked.
6. RM is set HIGH during $\overline{\mathrm{MRS}}$.

Figure 11. Retransmit Timing (IDT Standard Mode)

NOTES:

1. Retransmit setup is complete after $\overline{\mathrm{OR}}$ return LOW .
2. No more than D-2 words may be written to the FIFO between Reset (Master or Partial) and Retransmit setup. Therefore, IR will be LOW throughout the Retransmit setup procedure. If x18 Input or $x 18$ Output bus Width is selected, $D=513$ for the IDT72V223, 1,025 for the IDT72V233, 2,049 for the IDT72V243, 4,097 for the IDT72V253, 8,193 for the IDT72V263, 16,385 for the IDT72V273, 32,769 for the IDT72V283 and 65,537 for the IDT72V293.
If both $x 9$ Input and $x 9$ Output bus Widths are selected, $D=1,025$ for the IDT72V223, 2,049 for the IDT72V233, 4,097 for the IDT72V243, 8,193 for the IDT72V253, 16,385 for the IDT72V263, 32,769 for the IDT72V273, 65,537 for the IDT72V283 and 131,073 for the IDT72V293.
3. $\overline{\mathrm{OE}}=\mathrm{LOW}$
4. $W_{1}, W_{2}, W_{3}=$ first, second and third words written to the FIFO after Master Reset.
5. There must be at least two words written to the FIFO before a Retransmit operation can be invoked.
6. RM is set HIGH during MRS

Figure 12. Retransmit Timing (FWFT Mode)

NOTES:

1. If the part is empty at the point of Retransmit, the Empty Flag ($\overline{\mathrm{EF}}$) will be updated based on RCLK (Retransmit clock cycle). Valid data will also appear on the output.
2. $\overline{\mathrm{OE}}=$ LOW: enables data to be read on outputs $\mathrm{Qo}_{0}-\mathrm{Qn}$.
3. $\mathrm{W}_{1}=$ first word written to the FIFO after Master Reset, $\mathrm{W}_{2}=$ second word written to the FIFO after Master Reset.
4. No more than D-2 may be written to the FIFO between Reset (Master or Partial) and Retransmit setup. Therefore, $\overline{\mathrm{FF}}$ will be HIGH throughout the Retransmit setup procedure.

If $x 18$ Input or $x 18$ Output bus Width is selected, $D=512$ for the IDT72V223, 1,024 for the IDT72V233, 2,048 for the IDT72V243, 4,096 for the IDT72V253, 8,192 for the IDT72V263, 16,384 for the IDT72V273, 32,768 for the IDT72V283 and 65,536 for the IDT72V293.
If both $x 9$ Input and $x 9$ Output bus Widths are selected, $D=1,024$ for the IDT72V223, 2,048 for the IDT72V233, 4,096 for the IDT72V243, 8,192 for the IDT72V253, 16,384 for the IDT72V263, 32,768 for the IDT72V273, 65,536 for the IDT72V283 and 131,072 for the IDT72V293.
5. There must be at least two words written to and read from the FIFO before a Retransmit operation can be invoked.
6. RM is set LOW during $\overline{\mathrm{MRS}}$.

Figure 13. Zero Latency Retransmit Timing (IDT Standard Mode)

NOTES:

1. If the part is empty at the point of Retransmit, the output ready flag ($\overline{\mathrm{OR}}$), will be updated based on RCLK (Retransmit clock cycle), valid data will also appear on the output.
2. No more than D-2 words may be written to the FIFO between Reset (Master or Partial) and Retransmit setup. Therefore, IR will be LOW throughout the Retransmit setup procedure.

If $x 18$ Input or $x 18$ Output bus Width is selected, $D=513$ for the IDT72V223, 1,025 for the IDT72V233, 2,049 for the IDT72V243, 4,097 for the IDT72V253, 8,193 for the IDT72V263, 16,385 for the IDT72V273, 32,769 for the IDT72V283 and 65,537 for the IDT72V293.
If both x 9 Input and x 9 Output bus Widths are selected, $\mathrm{D}=1,025$ for the IDT72V223, 2,049 for the IDT72V233, 4,097 for the IDT72V243, 8,193 for the IDT72V253, 16,385 for the IDT72V263, 32,769 for the IDT72V273, 65,537 for the IDT72V283 and 131,073 for the IDT72V293.
3. $\overline{\mathrm{OE}}=\mathrm{LOW}$
4. $\mathrm{W}_{1}, \mathrm{~W}_{2}, \mathrm{~W}_{3}=$ first, second and third words written to the FIFO after Master Reset.
5. There must be at least two words written to the FIFO before a Retransmit operation can be invoked.
6. RM is set LOW during $\overline{\mathrm{MRS}}$.

Figure 14. Zero Latency Retransmit Timing (FWFT Mode)

NOTES:

1. $x 9$ to $x 9$ mode: $X=9$ for the IDT72V223, $X=10$ for the IDT72V233, $X=11$ for the IDT72V243, $X=12$ for the IDT72V253, $X=13$ for the IDT72V263, $X=14$ for the IDT72V273, $X=15$ for the IDT72V283 and $X=16$ for the IDT72V293.
2. All other modes: $X=8$ for the IDT72V223, $X=9$ for the IDT72V233, $X=10$ for the IDT72V243, $X=11$ for the IDT72V253, $X=12$ for the IDT72V263, $X=13$ for the IDT72V273, $X=14$ for the IDT72V283 and $X=15$ for the IDT72V293.

Figure 15. Serial Loading of Programmable Flag Registers (IDT Standard and FWFT Modes)

NOTE:

1. This diagram is based on programming the IDT72V293 x 18 bus width. Add one extra cycle to both the $\overline{\mathrm{PAE}}$ offset and $\overline{\mathrm{PAF}}$ offset for x 9 bus width.

Figure 16. Parallel Loading of Programmable Flag Registers (IDT Standard and FWFT Modes)

1. $\overline{O E}=L O W$.
2. This diagram is based on programming the IDT72V293 $x 18$ bus width. Add one extra cycle to both the $\overline{\mathrm{PAE}}$ offset and $\overline{\mathrm{PAF}}$ offset for x 9 bus width.

Figure 17. Parallel Read of Programmable Flag Registers (IDT Standard and FWFT Modes)

NOTES:

1. $m=\overline{P A F}$ offset .
2. $D=$ maximum FIFO depth.

In IDT Standard mode: if x18 Input or x18 Output bus Width is selected, $\mathrm{D}=512$ for the IDT72V223, 1,024 for the IDT72V233, 2,048 for the IDT72V243, 4,096 for the IDT72V253, 8,192 for the IDT72V263, 16,384 for the IDT72V273, 32,768 for the IDT72V283 and 65,536 for the IDT72V293. If both $x 9$ Input and $x 9$ Output bus Widths are selected, $D=1,024$ for the IDT72V223, 2,048 for the IDT72V233, 4,096 for the IDT72V243, 8,192 for the IDT72V253, 16,384 for the IDT72V263, 32,768 for the IDT72V273, 65,536 for the IDT72V283 and 131,072 for the IDT72V293.
In FWFT mode: if x18 Input or x18 Output bus Width is selected, $\mathrm{D}=513$ for the IDT72V223, 1,025 for the IDT72V233, 2,049 for the IDT72V243, 4,097 for the IDT72V253, 8,193 for the IDT72V263, 16,385 for the IDT72V273, 32,769 for the IDT72V283 and 65,537 for the IDT72V293. If both $x 9$ Input and $x 9$ Output bus Widths are selected, $D=1,025$ for the IDT72V223, 2,049 for the IDT72V233, 4,097 for the IDT72V243, 8,193 for the IDT72V253, 16,385 for the IDT72V263, 32,769 for the IDT72V273, 65,537 for the IDT72V283 and 131,073 for the IDT72V293.
3. tSKEW2 is the minimum time between a rising RCLK edge and a rising WCLK edge to guarantee that $\overline{\text { PAF }}$ will go HIGH (after one WCLK cycle plus tpafs). If the time between the rising edge of RCLK and the rising edge of WCLK is less than tsKEW2, then the $\overline{\mathrm{PAF}}$ deassertion time may be delayed one extra WCLK cycle.
4. $\overline{\mathrm{PAF}}$ is asserted and updated on the rising edge of WCLK only.
5. Select this mode by setting PFM HIGH during Master Reset.

Figure 18. Synchronous Programmable Almost-Full Flag Timing (IDT Standard and FWFT Modes)

Figure 19. Synchronous Programmable Almost-Empty Flag Timing (IDT Standard and FWFT Modes)

NOTES:

1. $m=\overline{\mathrm{PAF}}$ offset.
2. $D=$ maximum FIFO Depth.

In IDT Standard mode: if $x 18$ Input or $x 18$ Output bus Width is selected, $D=512$ for the IDT72V223, 1,024 for the IDT72V233, 2,048 for the IDT72V243, 4,096 for the IDT72V253, 8,192 for the IDT72V263, 16,384 for the IDT72V273, 32,768 for the IDT72V283 and 65,536 for the IDT72V293. If both $x 9$ Input and $x 9$ Output bus Widths are selected, $\mathrm{D}=1,024$ for the IDT72V223, 2,048 for the IDT72V233, 4,096 for the IDT72V243, 8,192 for the IDT72V253, 16,384 for the IDT72V263, 32,768 for the IDT72V273, 65,536 for the IDT72V283 and 131,072 for the IDT72V293.
In FWFT mode: if $x 18$ Input or $x 18$ Output bus Width is selected, $D=513$ for the IDT72V223, 1,025 for the IDT72V233, 2,049 for the IDT72V243, 4,097 for the IDT72V253, 8,193 for the IDT72V263, 16,385 for the IDT72V273, 32,769 for the IDT72V283 and 65,537 for the IDT72V293. If both x9 Input and x9 Output bus Widths are selected, D = 1,025 for the IDT72V223, 2,049 for the IDT72V233, 4,097 for the IDT72V243, 8,193 for the IDT72V253, 16,385 for the IDT72V263, 32,769 for the IDT72V273, 65,537 for the IDT72V283 and 131,073 for the IDT72V293.
3. $\overline{\text { PAF }}$ is asserted to LOW on WCLK transition and reset to HIGH on RCLK transition.
4. Select this mode by setting PFM LOW during Master Reset.

Figure 20. Asynchronous Programmable Almost-Full Flag Timing (IDT Standard and FWFT Modes)

NOTES:

1. $\mathrm{n}=\overline{\mathrm{PAE}}$ offset.
2. For IDT Standard Mode.
3. For FWFT Mode.
4. $\overline{\mathrm{PAE}}$ is asserted LOW on RCLK transition and reset to HIGH on WCLK transition.
5. Select this mode by setting PFM LOW during Master Reset.

Figure 21. Asynchronous Programmable Almost-Empty Flag Timing (IDT Standard and FWFT Modes)

NOTES:

1. In IDT Standard mode: $D=$ maximum FIFO depth. If $x 18$ Input or $x 18$ Output bus Width is selected, $D=512$ for the IDT72V223, 1,024 for the IDT72V233, 2,048 for the IDT72V243, 4,096 for the IDT72V253, 8,192 for the IDT72V263, 16,384 for the IDT72V273, 32,768 for the IDT72V283 and 65,536 for the IDT72V293. If both x9 Input and x9 Output bus Widths are selected, $\mathrm{D}=1,024$ for the IDT72V223, 2,048 for the IDT72V233, 4,096 for the IDT72V243, 8,192 for the IDT72V253, 16,384 for the IDT72V263, 32,768 for the IDT72V273, 65,536 for the IDT72V283 and 131,072 for the IDT72V293.
2. In FWFT mode: $\mathrm{D}=$ maximum FIFO depth. If x18 Input or x18 Output bus Width is selected, $\mathrm{D}=513$ for the IDT72V223, 1,025 for the IDT72V233, 2,049 for the IDT72V243, 4,097 for the IDT72V253, 8,193 for the IDT72V263, 16,385 for the IDT72V273, 32,769 for the IDT72V283 and 65,537 for the IDT72V293. If both $x 9$ Input and $x 9$ Output bus Widths are selected, $\mathrm{D}=1,025$ for the IDT72V223, 2,049 for the IDT72V233, 4,097 for the IDT72V243, 8,193 for the IDT72V253, 16,385 for the IDT72V263, 32,769 for the IDT72V273, 65,537 for the IDT72V283 and 131,073 for the IDT72V293.

Figure 22. Half-Full Flag Timing (IDT Standard and FWFT Modes)

NOTE:

1. $\overline{O E}=L O W$ and $\overline{W E N}=L O W$.

Figure 23. Asynchronous Write, Synchronous Read, Full Flag Operation (IDT Standard Mode)

NOTE:

1. $\overline{O E}=L O W$ and $\overline{W E N}=L O W$.

Figure 24. Asynchronous Write, Synchronous Read, Empty Flag Operation (IDT Standard Mode)

NOTE:

1. $\overline{\mathrm{OE}}=\mathrm{LOW}$ and $\overline{\mathrm{REN}}=\mathrm{LOW}$.
2. Asynchronous Read is available in IDT Standard Mode only.

Figure 25. Synchronous Write, Asynchronous Read, Full Flag Operation (IDT Standard Mode)

NOTE:

1. $\mathrm{OE}=\mathrm{LOW}$ and $\mathrm{REN}=\mathrm{LOW}$.
2. Asynchronous Read is available in IDT Standard Mode only.

Figure 26. Synchronous Write, Asynchronous Read, Empty Flag Operation (IDT Standard Mode)

NOTES:

1. $\overline{\mathrm{OE}}=\mathrm{LOW}, \overline{\mathrm{WEN}}=\mathrm{LOW}$, and $\overline{\text { REN }}=$ LOW.
2. Asynchronous Read is available in IDT Standard Mode only.

Figure 27. Asynchronous Write, Asynchronous Read, Empty Flag Operation (IDT Standard Mode)

NOTES:

1. $\overline{O E}=L O W, \overline{W E N}=L O W$, and $\overline{\text { REN }}=$ LOW .
2. Asynchronous Read is available in IDT Standard Mode only.

Figure 28. Asynchronous Write, Asynchronous Read, Full Flag Operation (IDT Standard Mode)

OPTIONAL CONFIGURATIONS

WIDTH EXPANSION CONFIGURATION

Word width may be increased simply by connecting together the control signals of multiple devices. Status flags can be detected from any one device. The exceptions are the $\overline{\mathrm{EF}}$ and $\overline{\mathrm{FF}}$ functions in IDT Standard mode and the $\overline{\mathrm{R}}$ and $\overline{\mathrm{OR}}$ functions in FWFT mode. Because of variations in skew between RCLK and WCLK, it is possible for $\overline{E F} / \overline{F F}$ deassertion and $\overline{\mathrm{R}} / \overline{\mathrm{OR}}$ assertion to vary by one cycle between FIFOs. In IDT Standard mode, such problems can be avoided by creating composite flags, that is, ANDing $\overline{\mathrm{EF}}$ of every FIFO, and separately ANDing $\overline{\text { FF }}$ of every FIFO. In FWFT mode,
composite flags can be created by ORing $\overline{\mathrm{OR}}$ of every FIFO, and separately ORing $\overline{\mathrm{R}}$ of every FIFO.

Figure29 demonstrates a width expansion usingtwoIDT72V223/72V233/ $72 \mathrm{~V} 243 / 72 \mathrm{~V} 253 / 72 \mathrm{~V} 263 / 72 \mathrm{~V} 273 / 72 \mathrm{~V} 283 / 72 \mathrm{~V} 293$ devices. If x 18 Input or x18Outputbus Width is selected, Do-D17 from each device forma36-bit wide input bus and Qo-Q17 from each device form a 36-bit wide output bus. If both x9 Input and x9 Outputbus Widths are selected, Do-D8 from each device form an 18-bitwide inputbus and Q0-Q8 from each device form an 18-bitwideoutput bus. Any word width can be attained by adding additional IDT72V223/72V233/ 72V243/72V253/72V263/72V273/72V283/72V293devices.

NOTES:

1. Use an AND gate in IDT Standard mode, an OR gate in FWFT mode.
2. Do not connect any output control signals directly together.
3. FIFO \#1 and FIFO \#2 must be the same depth, but may be different word widths.

Figure 29. Block Diagram of Width Expansion
For the x18 Input or x18 Output bus Width: $512 \times 36,1,024 \times 36,2,048 \times 36,4,096 \times 36,8,192 \times 36,16,384 \times 36,32,768 \times 36$ and $65,536 \times 36$ For both x9 Input and $x 9$ Output bus Widths: $1,024 \times 18,2,048 \times 18,4,096 \times 18,8,192 \times 18,16,284 \times 18,32,768 \times 18,65,536 \times 18$ and $131,072 \times 18$

Figure 30. Block Diagram of Depth Expansion
For the x18 Input or $x 18$ Output bus Width: $1,024 \times 18,2,048 \times 18,4,096 \times 18,8,192 \times 18,16,384 \times 18,32,768 \times 18,65,536 \times 18$ and $131,072 \times 18$ For both x9 Input and $x 9$ Output bus Widths: $2,048 \times 9,4,096 \times 9,8,192 \times 9,16,384 \times 9,32,768 \times 9,65,536 \times 9,131,072 \times 9$ and $262,144 \times 9$

DEPTH EXPANSION CONFIGURATION (FWFT MODE ONLY)

The IDT72V223 can easily be adapted to applications requiring depths greaterthan 512 whenthex18 Inputorx18OutputbusWidth is selected, 1,024 fortheIDT72V233,2,048 fortheIDT72V243,4,096forthe IDT72V253,8,192 forthe IDT72V263, 16,384 forthe IDT72V273,32,768 forthe IDT72V283 and 65,536 for the IDT72V293. When both x9 Input and x9 Outputbus Widths are selected, depths greater than 1,024 can be adaptedforthe IDT72V223,2,048 forthe IDT72V233,4,096 forthe IDT72V243, 8,192 forthe IDT72V253, 16,384 for the IDT72V263,32,768 for the IDT72V273,65,536 for the IDT72V283 and 131,072 for the IDT72V293. In FWFT mode, the FIFOs can be connected in series (the data outputs of one FIFO connected to the data inputs of the next) with no external logic necessary. The resulting configuration provides a total depth equivalent to the sum of the depths associated with each single FIFO. Figure 30 shows a depth expansion using two IDT72V223/72V233/72V243/ 72V253/72V263/72V273/72V283/72V293devices.

Care should betakento selectFWFTmodeduring MasterResetfor all FIFOs in the depth expansion configuration. The first word written to an empty configuration will pass from one FIFO to the next ("ripple down") until it finally appears at the outputs of the last FIFO in the chain-no read operation is necessary butthe RCLK ofeach FIFO mustbefree-running. Eachtimethe data word appears at the outputs of one FIFO, that device's $\overline{\text { OR line goes LOW, }}$ enabling a write to the next FIFO in line.

For an empty expansion configuration, the amount of time ittakes for $\overline{\mathrm{OR}}$ of the lastFIFO in the chainto go LOW (i.e.valid datato appearonthe lastFIFO's outputs) after a word has been written to the first FIFO is the sum of the delays for each individual FIFO:

$$
(\mathrm{N}-1)^{*}\left(4^{\star} \text { transfer clock }\right)+3^{\star} \text { TrCLK }
$$

whereNisthenumber ofFIFOs intheexpansion and TRCLK isthe RCLK period.

Note that extra cycles should be added for the possibility that the tSKEW1 specificationis notmetbetweenWCLKandtransferclock, orRCLKandtransfer clock, forthe $\overline{\mathrm{OR}}$ flag.

The "ripple down" delay is only noticeable for the firstword writtento anempty depth expansion configuration. There will be no delay evident for subsequent words written to the configuration.

The first free location created by reading from a full depth expansion configuration will "bubble up" from the last FIFO to the previous one until it finally moves into the first FIFO of the chain. Each time a free location is created in one FIFO of the chain, that FIFO's $\overline{\mathrm{R}}$ line goes LOW, enabling the preceding FIFO to write a word to fill it.

For afull expansion configuration, the amount oftime ittakesfor \bar{R} of the first FIFO in the chain to go LOW after a word has been read from the last FIFO is the sum of the delays for each individual FIFO:

$$
(\mathrm{N}-1)^{*}\left(3^{*} \text { transfer clock }\right)+2 \text { TwcLK }
$$

where N is the number of FIFOs in the expansion and TwCLK is the WCLK period. Notethat extracycles should be addedforthepossibility thatthetSKEW1 specificationis notmetbetweenRCLK andtransferclock, orWCLKandtransfer clock, for the $\overline{\mathrm{R}}$ flag.
The TransferClockline should be tied to eitherWCLK or RCLK, whichever is faster. Boththese actions result in data moving, as quickly as possible, to the end of the chain and free locations to the beginning of the chain.

Figure 31. Standard JTAG Timing

SYSTEM INTERFACE PARAMETERS

Parameter	Symbol	Test Conditions	IDT72V223 IDT72V233 IDT72V243 IDT72V253 IDT72V263 IDT72V273 IDT72V283 IDT72V293		
			Min.	Max.	Units
DataOutput	tDO $=$ Max		-	20	ns
Data Output Hold	tDOH ${ }^{(1)}$		0	-	ns
Datalnput	tDS	$\begin{aligned} & \text { trise=3ns } \\ & \text { tfall=3ns } \end{aligned}$	1010	-	ns
	tDH				

NOTE:

1. 50 pf loading on external output signals.

JTAG AC ELECTRICAL CHARACTERISTICS

$\left(\right.$ Vcc $=3.3 \mathrm{~V} \pm 5 \%$; Tcase $=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$)

Parameter	Symbol	Test Conditions	Min.				Max.	Units
JTAG Clock Input Period			-	100	-			
ns								
JTAG Clock HIGH	tTCKHIGH	-	40	-	ns			
JTAG Clock Low	tTCKLOW	-	40	-	ns			
JTAG ClockRise Time	tTCKRise	-	-	$5^{(1)}$	ns			
JTAG Clock Fall Time	tTCKFall	-	-	$5^{(1)}$	ns			
JTAGReset	tRST	-	50	-	ns			
JTAG Reset Recovery	tRSR	-	50	-	ns			

NOTE:

1. Guaranteed by design.

JTAG INTERFACE

Five additional pins (TDI, TDO, TMS, TCK and TRST) are provided to support the JTAGboundary scaninterface. TheIDT72V223/72V233/72V243/ 72V253/72V263/72V273/72V283/72V293 incorporates the necessary tap controller and modified pad cells to implement the JTAG facility.

Note thatIDT provides appropriateBoundary Scan Description Language program files for these devices.

The Standard JTAG interface consists of four basic elements:

- \quad Test Access Port (TAP)
- TAP controller
- Instruction Register (IR)
- Data Register Port (DR)

The following sections provide a brief description of each element. Fora complete description refertothe IEEE Standard TestAccess PortSpecification (IEEE Std. 1149.1-1990).

The Figure below shows the standard Boundary-Scan Architecture

Figure 32. Boundary Scan Architecture

TEST ACCESS PORT (TAP)

The Tap interface is a general-purpose port that provides access to the internal of the processor. Itconsists offour inputports(TCLK, TMS, TDI, $\overline{\text { TRST }}$) and one output port (TDO).

THETAPCONTROLLER

The Tap controller is a synchronous finite state machine that responds to TMS and TCLK signals to generateclock and control signals to the Instruction and Data Registers for capture and update of data.

NOTES:

1. Five consecutive TCK cycles with TMS $=1$ will reset the TAP.
2. TAP controller does not automatically reset upon power-up. The user must provide a reset to the TAP controller (either by TRST or TMS).
3. TAP controller must be reset before normal FIFO operations can begin.

Figure 33. TAP Controller State Diagram

Refer to the IEEE Standard Test Access Port Specification (IEEE Std. 1149.1) for the full state diagram

All state transitions within the TAP controller occur at the rising edge of the TCLK pulse. The TMS signal level (0 or 1) determines the state progression that occurs on each TCLK rising edge. The TAP controllertakes precedence over the FIFO memory and must be reset after power up of the device. See $\overline{T R S T}$ description formore details on TAP controller reset.

CAPTURE-DR

Data is loaded from the parallel input pins or core outputs into the Data Register.

SHIFT-DR

Thepreviously captured datais shifted in serially, LSB firstatthe rising edge of TCLKintheTDI/TDO path and shifted out serially, LSBfirstatthefallingedge of TCLKtowards the output.

UPDATE-DR

The shifting process has been completed. The data is latched into their parallel outputs in this state to be accessed through the internal bus.

EXIT1-DR / EXIT2-DR

This is atemporary controller state. IfTMS isheld high, a rising edge applied to TCK whileinthisstate causes the controllertoentertheUpdate-DRstate. This terminates the scanning process. All test data registers selected by the current instruction retain their previous state unchanged.

PAUSE-DR

This controller state allows shifting of the test data register in the serial path between TDI and TDO to be temporarily halted. All test data registers selected by the current instruction retain their previous state unchanged.

Capture-IR, Shift-IR and Update-IR, Exit-IR and Pause-IR are similarto Dataregisters. These instructions operate onthe instruction registers.

THE INSTRUCTION REGISTER

The Instruction register allows an instruction to be shifted in serially into the processor at the rising edge of TCLK.

The Instruction is used to select the test to be performed, or the test data registertobeaccessed, orboth. Theinstructionshifted intothe registerislatched at the completion of the shifting process whenthe TAP controller is at UpdateIRstate.

The instruction register must contain 4 bitinstruction register-based cells which canhold instruction data. These mandatory cells are located nearestthe serial outputs they are the least significantbits.

TEST DATAREGISTER

The Test Data register contains three test data registers: the Bypass, the Boundary Scan register and Device ID register.

These registers are connected in parallel between a common serial input and a common serial data output.

The following sections provide a brief description of each element. For a complete description, refertothe IEEE Standard TestAccess PortSpecification (IEEE Std. 1149.1-1990).

TEST BYPASS REGISTER

The register is used to allow test data to flow through the device from TDI to TDO. Itcontains asinglestage shiftregisterfor a minimumlength in serial path. When the bypass register is selected by an instruction, the shift registerstage is set to a logic zero on the rising edge of TCLK when the TAP controller is in theCapture-DR state.

The operation of the bypass register should not have any effect on the operation of the device in response to the BYPASS instruction.

THE BOUNDARY-SCAN REGISTER

The Boundary Scan Register allows serial data TDI be loaded into or read out of the processor input/outputports. The Boundary Scan Register is a part of the IEEE 1149.1-1990 Standard JTAG Implementation.

THE DEVICE IDENTIFICATION REGISTER

The Device Identification Register is a Read Only 32-bit register used to specify the manufacturer, part number and version of the processor to be determined throughthe TAP in response to the IDCODE instruction.

IDT JEDEC ID number is $0 \times B 3$. This translates to 0×33 when the parity is dropped in the 11-bit Manufacturer ID field.

Forthe IDT72V223/72V233/72V243/72V253/72V263/72V273/72V283/ 72V293, the Part Number field contains the following values:

Device	Part\# Field
IDT72V223	04EF
IDT72V233	04EE
IDT72V243	04ED
IDT72V253	$04 E C$
IDT72V263	04 EB
IDT72V273	04EA
IDT72V283	04E9
IDT72V293	04E8

31 (MSB) $2827 \quad 1211$

Version (4 bits) OX0	Part Number (16-bit)	Manufacturer ID (11-bit) OX33	1

IDT72V223/233/243/253/263/273/283/293JTAGDeviceldentificationRegister

JTAG INSTRUCTION REGISTER

The Instruction register allows instructionto be serially input into the device when the TAP controller is in the Shift-IR state. The instruction is decoded to perform thefollowing:

- Selecttest data registers that may operate while the instruction is current. The other test data registers should not interfere with chip operation and the selected data register.
- Definethe serialtestdata registerpaththatisused to shiftdatabetween TDI and TDO during data register scanning.
The Instruction Register is a 4 bit field (i.e. IR3, IR2, IR1, IR0) to decode 16 different possible instructions. Instructions are decoded as follows.

Hex Value	Instruction	Function
0×00	EXTEST	SelectBoundary ScanRegister
0×02	IDCODE	SelectChipIdentificationdataregister
0×01	SAMPLE/PRELOAD	SelectBoundary ScanRegister
0×03	HI-Z	JTAG
$0 \times 0 \mathrm{~F}$	BYPASS	SelectBypassRegister

Table 6. JTAG Instruction Register Decoding
The following sections provide a brief description of each instruction. For acompletedescription refertothe IEEEStandard TestAccessPortSpecification (IEEE Std. 1149.1-1990).

EXTEST

The mandatory EXTEST instruction is provided for external circuity and board level interconnection check.

IDCODE

This instruction is provided to select Device Identification Registerto read out manufacture's identity, partnumber and version number.

SAMPLE/PRELOAD

The mandatory SAMPLE/PRELOAD instruction allows data values to be loaded ontothe latched parallel outputs of the boundary-scan shiftregister prior to selection of the boundary-scan test instruction. The SAMPLE instruction allowsa snapshotofdataflowing fromthe systempinstotheon-chiplogic orvice versa.

HIGH-Z

This instruction placesall theoutputpinsonthe device intoahighimpedance state.

BYPASS

The Bypass instruction contains a single shift-register stage and is set to provide a minimum-length serial path betweenthe TDI and the TDO pins of the device when no test operation of the device is required.

ORDERING INFORMATION

NOTE:

1. Industrial temperature range product for the 10 ns is available as a standard device. All other speed grades are available by special order.
2. The IDT72V223/72V233/72V243/72V253 are only available in 6ns and 7.5ns speed grades.

DATASHEET DOCUMENT HISTORY

12/18/2000
03/27/2001
04/06/2001
12/14/2001
12/20/2001
02/01/2002
03/25/2002
05/24/2002
01/20/2003
02/11/2003
07/15/2003
pgs.7, 8, 9, and 37.
pgs.9, and 37
pgs. 4, 5, and 21.
pgs. 1-45.
pg. 9.
pgs. 9, and 45.
pgs. 2, and 41.
pgs.3, and 11.
pgs. 1, 7, 9, 10, and 15.
pgs.7, and 43.
pgs. 3,19 , and 36-38.
for SALES:
800-345-7015 or 408-727-6116
fax: 408-492-8674
www.idt.com

